3 resultados para Carnot

em Indian Institute of Science - Bangalore - Índia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

There are deficiencies in current definition of thermodynamic efficiency of fuel cells (ηcth = ΔG/ΔH); efficiency greater than unity is obtained when AS for the cell reaction is positive, and negative efficiency is obtained for endothermic reactions. The origin of the flow is identified. A new definition of thennodynamic efficiency is proposed that overcomes these limitations. Consequences of the new definition are examined. Against the conventional view that fuel cells are not Carnot limited, several recent articles have argued that the second law of thermodynamics restricts fuel cell energy conversion in the same way as heat engines. This controversy is critically examined. A resolution is achieved in part from an understanding of the contextual assumptions in the different approaches and in part from identifying some conceptual limitations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A low thermal diffusivity of adsorption beds induces a large thermal gradient across cylindrical adsorbers used in adsorption cooling cycles. This reduces the concentration difference across which a thermal compressor operates. Slow adsorption kinetics in conjunction with the void volume effect further diminishes throughputs from those adsorption thermal compressors. The problem can be partially alleviated by increasing the desorption temperatures. The theme of this paper is the determination the minimum desorption temperature required for a given set of evaporating/condensing temperatures for an activated carbon + HFC 134a adsorption cooler. The calculation scheme is validated from experimental data. Results from a parametric analysis covering a range of evaporating/condensing/desorption temperatures are presented. It is found that the overall uptake efficiency and Carnot COP characterize these bounds. A design methodology for adsorber sizing is evolved. (c) 2012 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We consider a recently proposed four-level quantum heat engine (QHE) model to analyze the role of quantum coherences in determining the thermodynamic properties of the engine, such as flux, output power, and efficiency. A quantitative analysis of the relative effects of the coherences induced by the two thermal baths is brought out. By taking account of the dissipation in the cavity mode, we define useful work obtained from the QHE and present some analytical results for the optimal values of relative coherences that maximizes flux (hence output power) through the engine. We also analyze the role of quantum effects in inducing population inversion (lasing) between the states coupled to the cavity mode. The universal behavior of the efficiency at maximum power (EMP) is examined. In accordance with earlier theoretical predictions, to leading order, we find that EMP similar to eta(c)/2, where eta(c) is Carnot efficiency. However, the next higher order coefficient is system dependent and hence nonuniversal.