18 resultados para Capture Fishery
em Indian Institute of Science - Bangalore - Índia
Resumo:
An inexpensive and simple circuit to aid the direct measurement of majority carrier capture cross sections of impurity levels in the band gap of a semiconductor by the variable width filling pulse technique is presented. With proper synchronisation, during the period of application of the pulse, the device is disconnected from the capacitance meter to avoid distortion of the pulse and is reconnected again to the meter to record the emission transient. Modes of operation include manual triggering for long emission transients, repetitive triggering for isothermal and DLTS measurements and the DLTS mode which is to be used with signal analysers that already provide a synchronising pulse for disconnection.
Resumo:
A modified DLTS technique is proposed for the direct measurement of capture cross-section of MOS surface states. The nature of temperature and energy dependence σn is inferred from data analysis. Temperature dependence of σn is shown to be consistent with the observed DLTS line shapes.
Resumo:
A new simple-pole model for muon capture by 40Ca with emission of neutrons is suggested, in close analogy with radiative pion capture, and the calculated energy spectrum of the emitted neutron agrees well with the experimental results of the Columbia group for higher neutron energies.
Resumo:
We consider the slotted ALOHA protocol on a channel with a capture effect. There are M
Resumo:
This paper presents a low cost but high resolution retinal image acquisition system of the human eye. The images acquired by a CMOS image sensor are communicated through the Universal Serial Bus (USB) interface to a personal computer for viewing and further processing. The image acquisition time was estimated to be 2.5 seconds. This system can also be used in telemedicine applications.
Resumo:
A deep‐level transient spectroscopy (DLTS) technique is reported for determining the capture cross‐section activation energy directly. Conventionally, the capture activation energy is obtained from the temperature dependence of the capture cross section. Capture cross‐section measurement is often very doubtful due to many intrinsic errors and is more critical for nonexponential capture kinetics. The essence of this technique is to use an emission pulse to allow the defects to emit electrons and the transient signal from capture process due to a large capture barrier was analyzed, in contrast with the emission signal in conventional DLTS. This technique has been applied for determining the capture barrier for silicon‐related DX centers in AlxGa1−xAs for different AlAs mole fractions.
Resumo:
In this paper, an ultrasonic wave propagation analysis in single-walled carbon nanotube (SWCNT) is re-studied using nonlocal elasticity theory, to capture the whole behaviour. The SWCNT is modeled using Flugge's shell theory, with the wall having axial, circumferential and radial degrees of freedom and also including small scale effects. Nonlocal governing equations for this system are derived and wave propagation analysis is also carried out. The revisited nonlocal elasticity calculation shows that the wavenumber tends to infinite at certain frequencies and the corresponding wave velocity tends to zero at those frequencies indicating localization and stationary behavior. This frequency is termed as escape frequency. This behavior is observed only for axial and radial waves in SWCNT. It has been shown that the circumferential waves will propagate dispersively at higher frequencies in nonlocality. The magnitudes of wave velocities of circumferential waves are smaller in nonlocal elasticity as compared to local elasticity. We also show that the explicit expressions of cut-off frequency depend on the nonlocal scaling parameter and the axial wavenumber. The effect of axial wavenumber on the ultrasonic wave behavior in SWCNTs is also discussed. The present results are compared with the corresponding results (for first mode) obtained from ab initio and 3-D elastodynamic continuum models. The acoustic phonon dispersion relation predicted by the present model is in good agreement with that obtained from literature. The results are new and can provide useful guidance for the study and design of the next generation of nanodevices that make use of the wave propagation properties of single-walled carbon nanotubes.
Resumo:
Energy and energy services are the backbone of growth and development in India and is increasingly dependent upon the use of fossil based fuels that lead to greenhouse gases (GHG) emissions and related concerns. Algal biofuels are being evolved as carbon (C)-neutral alternative biofuels. Algae are photosynthetic microorganisms that convert sunlight, water and carbon dioxide (CO2) to various sugars and lipids Tri-Acyl-Glycols (TAG) and show promise as an alternative, renewable and green fuel source for India. Compared to land based oilseed crops algae have potentially higher yields (5-12 g/m(2)/d) and can use locations and water resources not suited for agriculture. Within India, there is little additional land area for algal cultivation and therefore needs to be carried out in places that are already used for agriculture, e.g. flooded paddy lands (20 Mha) with village level technologies and on saline wastelands (3 Mha). Cultivating algae under such conditions requires novel multi-tier, multi-cyclic approaches of sharing land area without causing threats to food and water security as well as demand for additional fertilizer resources by adopting multi-tier cropping (algae-paddy) in decentralized open pond systems. A large part of the algal biofuel production is possible in flooded paddy crop land before the crop reaches dense canopies, in wastewaters (40 billion litres per day), in salt affected lands and in nutrient/diversity impoverished shallow coastline fishery. Mitigation will be achieved through avoidance of GHG, C-capture options and substitution of fossil fuels. Estimates made in this paper suggest that nearly half of the current transportation petro-fuels could be produced at such locations without disruption of food security, water security or overall sustainability. This shift can also provide significant mitigation avenues. The major adaptation needs are related to socio-technical acceptance for reuse of various wastelands, wastewaters and waste-derived energy and by-products through policy and attitude change efforts.
Resumo:
Opportunistic selection selects the node that improves the overall system performance the most. Selecting the best node is challenging as the nodes are geographically distributed and have only local knowledge. Yet, selection must be fast to allow more time to be spent on data transmission, which exploits the selected node's services. We analyze the impact of imperfect power control on a fast, distributed, splitting based selection scheme that exploits the capture effect by allowing the transmitting nodes to have different target receive powers and uses information about the total received power to speed up selection. Imperfect power control makes the received power deviate from the target and, hence, affects performance. Our analysis quantifies how it changes the selection probability, reduces the selection speed, and leads to the selection of no node or a wrong node. We show that the effect of imperfect power control is primarily driven by the ratio of target receive powers. Furthermore, we quantify its effect on the net system throughput.
Resumo:
A controlled laboratory experiment was carried out on forty Indian male college students for evaluating the effect of indoor thermal environment on occupants' response and thermal comfort. During experiment, indoor temperature varied from 21 degrees C to 33 degrees C, and the variables like relative humidity, airflow, air temperature and radiant temperature were recorded along with subject's physiological parameters (skin (T-sk) and oral temperature (T-c)) and subjective thermal sensation responses (TSV). From T-sk and T-c, body temperature (T-b) was evaluated. Subjective Thermal Sensation Vote (TSV) was recorded using ASHRAE 7-point scale. In PMV model, Fanger's T-sk equation was used to accommodate adaptive response. Step-wise regression analysis result showed T-b was better predictor of TSV than T-sk and T-c. Regional skin temperature response, suppressed sweating without dipping, lower sweating threshold temperature and higher cutaneous threshold for sweating were observed as thermal adaptive responses. These adaptive responses cannot be considered in PMV model. To incorporate subjective adaptive response, mean skin temperature (T-sk) is considered in dry heat loss calculation. Along with these, PMV-model and other two methodologies are adopted to calculate PMV values and results are compared. However, recent literature is limited to measure the sweat rate in Indians and consideration of constant Ersw in PMV model needs to be corrected. Using measured T-sk in PMV model (Method(1)), thermal comfort zone corresponding to 0.5 <= PMV <= 0.5 was evaluated as (22.46-25.41) degrees C with neutral temperature of 23.91 degrees C, similarly while using TSV response, wider comfort zone was estimated as (23.25-26.32) degrees C with neutral temperature at 24.83 degrees C, which was further increased to with TSV-PPDnew, relation. It was observed that PMV-model overestimated the actual thermal response. Interestingly, these subjects were found to be less sensitive to hot but more sensitive to cold. A new TSV-PPD relation (PPDnew) was obtained from the population distribution of TSV response with an asymmetric distribution of hot-cold thermal sensation response from Indians. The calculations of human thermal stress according to steady state energy balance models used on PMV model seem to be inadequate to evaluate human thermal sensation of Indians. Relevance to industry: The purpose of this paper is to estimate thermal comfort zone and optimum temperature for Indians. It also highlights that PMV model seems to be inadequate to evaluate subjective thermal perception in Indians. These results can be used in feedback control of HVAC systems in residential and industrial buildings. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Opportunistic selection in multi-node wireless systems improves system performance by selecting the ``best'' node and by using it for data transmission. In these systems, each node has a real-valued local metric, which is a measure of its ability to improve system performance. Our goal is to identify the best node, which has the largest metric. We propose, analyze, and optimize a new distributed, yet simple, node selection scheme that combines the timer scheme with power control. In it, each node sets a timer and transmit power level as a function of its metric. The power control is designed such that the best node is captured even if. other nodes simultaneously transmit with it. We develop several structural properties about the optimal metric-to-timer-and-power mapping, which maximizes the probability of selecting the best node. These significantly reduce the computational complexity of finding the optimal mapping and yield valuable insights about it. We show that the proposed scheme is scalable and significantly outperforms the conventional timer scheme. We investigate the effect of. and the number of receive power levels. Furthermore, we find that the practical peak power constraint has a negligible impact on the performance of the scheme.
Resumo:
Lymphatic filariasis is a parasitic disease of tropical countries. This is a disfiguring and painful disease contracted in childhood, but the symptoms become apparent only in later years. Diagnosis of filarial infection is very crucial for the management of the disease. The main objective of this study was to develop a filarial antigen-based immunological assay for the diagnosis and surveillance of the disease. Monoclonal and polyclonal antibodies were raised to the recombinant protein Brugia malayi vespid allergen homologue (VAH). Capture enzyme-linked immunosorbent assay (ELISA) was standardized utilizing various combinations of antibodies and evaluated with serum samples of endemic normal (EN, n = 110), microfilaraemic (MF, n = 65), chronic pathology (CP, n = 45) and non-endemic normal (NEN, n = 10) individuals. Of the 230 samples tested, VAHcapture assay detected circulating antigen in 97.91% of bancroftian and 100% of brugian microfilaraemic individuals, and 5% of endemic normal individuals, comparable to the earlier reported SXP-1 antigen detection assay. However, the combination of VAH and SXP-1 (VS) capture ELISA was found to be more robust, detecting 100% of microfilaraemic individuals and with higher binding values. Thus an antigen capture immunoassay has been developed, which can differentiate active infection from chronic infection by detecting circulating filarial antigens in clinical groups of endemic areas.