76 resultados para Capacity of soil use

em Indian Institute of Science - Bangalore - Índia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Site-specific geotechnical data are always random and variable in space. In the present study, a procedure for quantifying the variability in geotechnical characterization and design parameters is discussed using the site-specific cone tip resistance data (qc) obtained from static cone penetration test (SCPT). The parameters for the spatial variability modeling of geotechnical parameters i.e. (i) existing trend function in the in situ qc data; (ii) second moment statistics i.e. analysis of mean, variance, and auto-correlation structure of the soil strength and stiffness parameters; and (iii) inputs from the spatial correlation analysis, are utilized in the numerical modeling procedures using the finite difference numerical code FLAC 5.0. The influence of consideration of spatially variable soil parameters on the reliability-based geotechnical deign is studied for the two cases i.e. (a) bearing capacity analysis of a shallow foundation resting on a clayey soil, and (b) analysis of stability and deformation pattern of a cohesive-frictional soil slope. The study highlights the procedure for conducting a site-specific study using field test data such as SCPT in geotechnical analysis and demonstrates that a few additional computations involving soil variability provide a better insight into the role of variability in designs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The vertical uplift resistance of a group of two horizontal coaxial strip anchors, embedded in a general c-phi soil (where c is the unit cohesion and phi is the soil friction angle), has been determined by using the lower bound finite element limit analysis. The variation of uplift factors F-c and F-gamma, due to the components of soil cohesion and unit weight, respectively, with changes in depth (H)/width (B) has been established for different values of vertical spacing (S)/B. As compared to a single isolated anchor, the group of two anchors provides a significantly greater magnitude of F-c for phi <= 20 degrees and with H/B >= 3. The magnitude of F-c becomes almost maximum when S/B is kept closer to 0.5H/B. On the other hand, with the same H/B, as compared to a single anchor, hardly any increase in F-gamma occurs for a group of two anchors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

By using the axisymmetric quasi-lower bound finite-element limit analysis, the bearing capacity factors N-c(p) and N-gamma q(p) have been computed for axially loaded piles, with the shaft embedded in a fully cohesive soil medium and the tip placed over cohesive frictional soil strata. The results were obtained for various combinations of L/D, phi(l), and c(l)/c(u); the subscripts l and u refer to lower and upper soil strata, respectively. The factors N-c(p) and N-gamma q(p) increase continuously with increases in L/D and phi(l); the rate of increase of N-c(p) and N-gamma q(p) with L/D, however, decreases with an increase in L/D. For c(l)/c(u) > 100, the factor N-c(p) hardly depends on L/D.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ultimate bearing capacity of strip foundations subjected to horizontal groundwater flow has been computed by making use of the stress characteristics method which is well known for its capability in solving quite accurately different stability problems in geotechnical engineering. The numerical solution has been generated both for smooth and rough footings placed on frictional soils. A correction factor (fγ) associated with Nγ term, to account for the existence of ground water flow, has been introduced. The variation of fγ has been obtained as a function of hydraulic gradient (i) for different values of soil frictional angle. The magnitude of fγ reduces continuously with an increase in the value of i.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The potential benefits of providing geocell reinforced sand mattress over clay subgrade with void have been investigated through a series of laboratory scale model tests. The parameters varied in the test programme include, thickness of unreinforced sand layer above clay bed, width and height of geocell mattress, relative density of the sand fill in the geocells, and influence of an additional layer of planar geogrid placed at the base of the geocell mattress. The test results indicate that substantial improvement in performance can be obtained with the provision of geocell mattress, of adequate size, over the clay subgrade with void. In order to have beneficial effect, the geocell mattress must spread beyond the void at least a distance equal to the diameter of the void. The influence of the void over the performance of the footing reduces for height of geocell mattress greater than 1.8 times the diameter of the footing. Better improvement in performance is obtained for geocells filled with dense soil. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the results of laboratory model loading tests and numerical studies carried out on square footings supported on geosynthetic reinforced sand beds. The relative performance of different forms of geosynthetic reinforcement (i.e. geocell, planar layers and randomly distributed mesh elements) in foundation beds is compared; using same quantity of reinforcement in each test. A biaxial geogrid and a geonet are used for reinforcing the sand beds. Geonet is used in two forms of reinforcement, viz. Planar layers and geocell, while the biaxial geogrid was used in three forms of reinforcement, viz. planar layers, geocell and randomly distributed mesh elements. Laboratory load tests on unreinforced and reinforced footings are simulated in a numerical model and the results are analyzed to understand the distribution of displacements and stresses below the footing better. Both the experimental and numerical studies demonstrated that the geocell is the most advantageous form of soil reinforcement technique of those investigated, provided there is no rupture of the material during loading. Geogrid used in the form of randomly distributed mesh elements is found to be inferior to the other two forms. Some significant observations on the difference in reinforcement mechanism for different forms of reinforcement are presented in this paper.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ultimate bearing capacity of a number of multiple strip footings, identically spaced and equally loaded to failure at the same time,is computed by using the lower bound limit analysis in combination with finite elements. The efficiency factor due to the component of soil unit weight, is computed with respect to changes in the clear spacing (xi(gamma)) between the footings. It is noted that the failure load for a footing in the group becomes always greater than that of a single isolated footing. The values of xi(gamma) for the smooth footings are found to be always lower than the rough footings. The values ofxi(gamma) are found to increase continuously with a decrease in the spacing between footings. As compared to the available theoretical and experimental results reported in literature, the present analysis provides generally a little lower values of xi(gamma). (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Experimental studies (Bishop 1966) show that for saturated normally consolidated clay the cohesion varies linearly with depth. The ultimate bearing capacity in such soil is generally obtained by limit equilibrium and limit analysis methods. Sokolovski's (1960) approach to the method of characteristics is used to find the ultimate bearing capacity of saturated clay whose cohesion is homogeneous and isotropic. In this technical note, the method of characteristics is further developed to determine ultimate bearing capacity of clay whose cohesion varies linearly with depth.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

By incorporating the variation of peak soil friction angle (phi) with mean principal stress (sigma(m)), the effect of anchor width (B) on vertical uplift resistance of a strip anchor plate has been examined. The anchor was embedded horizontally in a granular medium. The analysis was performed using lower bound finite element limit analysis and linear programming. An iterative procedure, proposed recently by the authors, was implemented to incorporate the variation of phi with sigma(m). It is noted that for a given embedment ratio, with a decrease in anchor width (B), (i) the uplift factor (F-gamma) increases continuously and (ii) the average ultimate uplift pressure (q(u)) decreases quite significantly. The scale effect becomes more pronounced at greater embedment ratios.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The method of characteristics coupled with a log-spiral failure surface was used to develop a theory for vertical uplift capacity of shallow horizontal strip anchors in a general c-phi soil. Uplift-capacity factors F(c), F(q) and F(gamma), for the effects of cohesion, surcharge, and density, respectively, have been established as functions of embedment ratio lambda and angle of friction phi. The extent of the failure surface at the ground has also been determined. Comparisons made with existing test results support the predictive capability of the theory, and comparisons with the analysis proposed by Meyerhof and Adams show the proposed analysis provides slightly more conservative predictions of pullout capacity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The problem of finding the horizontal pullout capacity of vertical anchors embedded in sands with the inclusion of pseudostatic horizontal earthquake body forces, was tackled in this note. The analysis was carried out using an upper bound limit analysis, with the consideration of two different collapse mechanisms: bilinear and composite logarithmic spiral rupture surfaces. The results are presented in nondimensional form to find the pullout resistance with changes in earthquake acceleration for different combinations of embedment ratio of the anchor (lambda), friction angle of the soil (phi), and the anchor-soil interface wall friction angle (delta). The pullout resistance decreases quite substantially with increases in the magnitude of the earthquake acceleration. For values of delta up to about 0.25-0.5phi, the bilinear and composite logarithmic spiral rupture surfaces gave almost identical answers, whereas for higher values of delta, the choice of the logarithmic spiral provides significantly smaller pullout resistance. The results compare favorably with the existing theoretical data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The method of stress characteristics has been employed to compute the end-bearing capacity of driven piles. The dependency of the soil internal friction angle on the stress level has been incorporated to achieve more realistic predictions for the end-bearing capacity of piles. The validity of the assumption of the superposition principle while using the bearing capacity equation based on soil plasticity concepts, when applied to deep foundations, has been examined. Fourteen pile case histories were compiled with cone penetration tests (CPT) performed in the vicinity of different pile locations. The end-bearing capacity of the piles was computed using different methods, namely, static analysis, effective stress approach, direct CPT, and the proposed approach. The comparison between predictions made by different methods and measured records shows that the stress-level-based method of stress characteristics compares better with experimental data. Finally, the end-bearing capacity of driven piles in sand was expressed in terms of a general expression with the addition of a new factor that accounts for different factors contributing to the bearing capacity. The influence of the soil nonassociative flow rule has also been included to achieve more realistic results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The horizontal pullout capacity of a group of two vertical strip plate anchors, placed along the same vertical plane, in a fully cohesive soil has been computed by using the lower bound finite element limit analysis. The effect of spacing between the plate anchors on the magnitude of total group failure load (P-uT) has been evaluated. An increase of soil cohesion with depth has also been incorporated in the analysis. For a weightless medium, the total pullout resistance of the group becomes maximum corresponding to a certain optimum spacing between the anchor plates which has been found to vary generally between 0.5B and B; where B is the width of the anchor plate. As compared to a single plate anchor, the increase in the pullout resistance for a group of two anchors becomes greater at a higher embedment ratio. The effect of soil unit weight has also been analyzed. It is noted that the interference effect on the pullout resistance increases further with an increase in the unit weight of soil mass.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

By applying the lower bound theorem of limit analysis in conjunction with finite elements and nonlinear optimization, the bearing capacity factor N has been computed for a rough strip footing by incorporating pseudostatic horizontal seismic body forces. As compared with different existing approaches, the present analysis is more rigorous, because it does not require an assumption of either the failure mechanism or the variation of the ratio of the shear to the normal stress along the footing-soil interface. The magnitude of N decreases considerably with an increase in the horizontal seismic acceleration coefficient (kh). With an increase in kh, a continuous spread in the extent of the plastic zone toward the direction of the horizontal seismic body force is noted. The results obtained from this paper have been found to compare well with the solutions reported in the literature. (C) 2013 American Society of Civil Engineers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The horizontal pullout capacity of vertical anchors embedded in sand has been determined by using an upper bound theorem of the limit analysis in combination with finite elements. The numerical results are presented in nondimensional form to determine the pullout resistance for various combinations of embedment ratio of the anchor (H/B), internal friction angle (ϕ) of sand, and the anchor-soil interface friction angle (δ). The pullout resistance increases with increases in the values of embedment ratio, friction angle of sand and anchor-soil interface friction angle. As compared to earlier reported solutions in literature, the present solution provides a better upper bound on the ultimate collapse load.