36 resultados para CU,ZN-SUPEROXIDE DISMUTASE

em Indian Institute of Science - Bangalore - Índia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Superoxide dismutase has been discovered within the periplasm of several Gram-negative pathogens. We studied the Cu,Zn-SOD enzyme in Escherichia coli isolated from clinical samples (stool samples) collected from patients suffering from diarrhea. Antibiogram studies of the isolates were carried out to determine the sensitive and resistant strains. The metal co-factor present in the enzyme was confirmed by running samples in native gels and inhibiting with 2 mM potassium cyanide. A 519 bp sodC gene was amplified from resistant and sensitive strains of Escherichia coli. Cloning and sequencing of the sodC gene indicated variation in the protein and amino acid sequences of sensitive and resistant isolates. The presence of sodC in highly resistant Escherichia coli isolates from diarrheal patients indicates that sodC may play role in enhancing the pathogenicity by protecting cells from exogenous sources of superoxide, such as the oxidative burst of phagocytes. The presence of SodC could be one of the factors for bacterial virulence.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A TEM study of the interphase boundary structure of 9R orthorhombic alpha1' martensite formed in beta' Cu---Zn alloys shows that it consists of a single array of dislocations with Burgers vector parallel to left angle bracket110right-pointing angle beta and spaced about 3.5 nm apart. This Burgers vector lies out of the interface plane; hence the interface dislocations are glissile. Unexpectedly, though, the Burgers vectors of these dislocations are not parallel when referenced to the matrix and the martensite lattices. This finding is rationalized on published hard sphere models as a consequence of relaxation of a resultant of the Bain strain and lattice invariant shear displacements within the matrix phase.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Interaction of CO with Cu clusters deposited on a ZnO(0001) crystal and on ZnO/Zn surfaces (prepared in the electron spectrometer) has been examined by UV and X-ray photoelectron spectroscopy. The interaction is stronger with the small Cu clusters deposited on ZnO/Zn surfaces. Interaction of CO is evert stronger with annealed Cu/ZnO/Zn surfaces where Cu-Zn alloy particles are present. Copyright (C) 1996 Published by Elsevier Science Ltd

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A potent superoxide dismutase mimic; Mn-II(HL)(2) [H(2)L = 2,6-bis(benzimidazol-2-yl)pyridine] has been synthesised and characterised by its crystal structure determination and EPR spectroscopy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In submitted research; nanocrystalline powders having elements Ni0.5Cu0.25Zn0.25Fe2 xInxO4 with varied amounts of indium ( x = 0.0, 0.1, 0.2, 0.3 and 0.4) were grown-up by modified citrate to nitrate alchemy. The realism of single phase cubic spinel creation of the synthesized ferrite samples was studied by the DTA-TGA, XRD, SEM, EDX, FT-IR, VSM and dielectric measurements. SEM was applied to inspect the morphological variations and EDX was used to determine the compositional mass ratios. The studies on the dielectric constant (epsilon'), dielectric loss (epsilon `'), loss tangent (tan delta), ac conductivity (sigma(ac)), resistive and reactive parts of the impedance analysis (Z' and Z `') at room temperature were also carried out. The saturation magnetizations (Ms) were determined using the vibrating sample magnetometer (VSM). Ms. decreased with the increase In3+ doping content, as Fe3+ of 5(mu B) ions are replaced by In3+ of 5 mu(B) ions. (C) 2012 Elsevier B. V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Autoxidation of pyrogallol in alkaline medium is characterized by increases in oxygen consumption, absorbance at 440 nm, and absorbance at 600 nm. The primary products are H2O2 by reduction of O-2 and pyrogallol-ortho-quinone by oxidation of pyrogallol. About 20 % of the consumed oxygen was used for ring opening leading to the bicyclic product, purpurogallin-quinone (PPQ). The absorbance peak at 440 nm representing the quinone end-products increased throughout at a constant rate. Prolonged incubation of pyrogallol in alkali yielded a product with ESR signal. In contrast the absorbance peak at 600 nm increased to a maximum and then declined after oxygen consumption ceased. This represents quinhydrone charge-transfer complexes as similar peak instantly appeared on mixing pyrogallol with benzoquinones, and these were ESR-silent. Superoxide dismutase inhibition of pyrogallol autoxidation spared the substrates, pyrogallol, and oxygen, indicating that an early step is the target. The SOD concentration-dependent extent of decrease in the autoxidation rate remained the same regardless of higher control rates at pyrogallol concentrations above 0.2 mM. This gave the clue that SOD is catalyzing a reaction that annuls the forward electron transfer step that produces superoxide and pyrogallol-semiquinone, both oxygen radicals. By dismutating these oxygen radicals, an action it is known for, SOD can reverse autoxidation, echoing the reported proposal of superoxide:semiquinone oxidoreductase activity for SOD. The following insights emerged out of these studies. The end-product of pyrogallol autoxidation is PPQ, and not purpurogallin. The quinone products instantly form quinhydrone complexes. These decompose into undefined humic acid-like complexes as late products after cessation of oxygen consumption. SOD catalyzes reversal of autoxidation manifesting as its inhibition. SOD saves catechols from autoxidation and extends their bioavailability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background & objectives: Periplasmic copper and zinc superoxide dismutase (Cu,Zn-SOD or SodC) is an important component of the antioxidant shield which protects bacteria from the phagocytic oxidative burst. Cu,Zn-SODs protect Gram-negative bacteria against oxygen damage which have also been shown to contribute to the pathogenicity of these bacterial species. We report the presence of SodC in drug resistant Salmonella sp. isolated from patients suffering from enteric fever. Further sodC was amplified, cloned into Escherichia coli and the nucleotide sequence and amino acid sequence homology were compared with the standard strain Salmonella Typhimurium 14028. Methods: Salmonella enterica serovar Typhi (S. Typhi) and Salmonellaenterica serovar Paratyphi (S. Paratyphi) were isolated and identified from blood samples of the patients. The isolates were screened for the presence of Cu, Zn-SOD by PAGE using KCN as inhibitor of Cu,Zn-SOD. The gene (sodC) was amplified by PCR, cloned and sequenced. The nucleotide and amino acid sequences of sodC were compared using CLUSTAL X.Results: SodC was detected in 35 per cent of the Salmonella isolates. Amplification of the genomic DNA of S. Typhi and S. Paratyphi with sodC specific primers resulted in 519 and 515 bp amplicons respectively. Single mutational difference at position 489 was observed between thesodC of S. Typhi and S. Paratyphi while they differed at 6 positions with the sodC of S. Typhimurium 14028. The SodC amino acid sequences of the two isolates were homologous but 3 amino acid difference was observed with that of standard strain S. Typhimurium 14028.Interpretation & conclusions: The presence of SodC in pathogenic bacteria could be a novel candidate as phylogenetic marker.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study was to investigate the effect of W. calendulacea on ischemia and reperfusion-induced cerebral injury. Cerebral ischemia was induced by occluding right and left common carotid arteries (global cerebral ischemia) for 30 min followed by reperfusion for 1 h and 4 h individually. Various biochemical alterations, produced subsequent to the application of bilateral carotid artery occlusion (BCAO) followed by reperfusion viz. increase in lipid peroxidation (LPO), hydrogen peroxide (H(2)O(2)), and decrease in reduced glutathione (GSH), catalase (CAT) and superoxide dismutase (SOD), level in the brain tissue, Western blot analysis (Cu-Zn-SOD and CAT) and assessment of cerebral infarct size were measured. All those enzymes are markedly reversed and restored to near normal level in the groups pre-treated with W. calendulacea (250 and 500 mg/kg given orally in single and double dose/day for 10 days) in dose-dependent way. The effect of W. calendulacea had increased significantly the protein expression of copper/zinc superoxide dismutase (Cu-Zn-SOD) and CAT in cerebral ischemia. W. claendulacea was markedly decrease cerebral infarct damages but results are not statistically significant. It can be concluded that W. calendulacea possesses a neuroprotective activity against cerebral ischemia in rat.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sulphoxidation of compounds capable of undergoing biological sulphoxidation has been demonstrated in a model system (NADH–phenazine methosulphate–O2), known to generate superoxide anions (O2-). Addition of superoxide dismutase to this system results in complete inhibition, suggesting the involvement of O2- in sulphoxidation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mechanism of hydroxylation reactions catalyzed by m-hydroxybenzoate-4-hydroxylase and anthranilate hydroxylase from Aspergillus niger was investigated using superoxide dismutase from ovine erythrocytes. Inclusion of superoxide dismutase in the assay mixtures of the two enzymes resulted in complete inhibition of the hydroxylation reaction, indicating the possible involvement of superoxide anions (O2−) in these reactions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hydroxylation of aromatic compounds was observed in NADH-phenazine methosulfate-O2 model system known to generate superoxide anions (Image ). Addition of superoxide dismutase prepared from ovine erythrocytes to this hydroxylating system resulted in complete inhibition, suggesting an involvement of Image in aromatic hydroxylations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oxygen release accompanying oxidation of vanadyl by diperoxovanadate was suppressed on addition of NADH. The added NADH was rapidly oxidized, oxygen in the medium was consumed, and the reaction terminated on exhaustion of either NADH or vanadyl. The consumption of oxygen and disappearance of NADH needed small concentrations of diperoxovanadate to initiate and increased with increase in the concentration of vanadyl and NADH or decrease of pH. The products of the reaction were found to be NAD(+) from NADH and vanadate oligomers from vanadyl and oxygen. The reaction was insensitive to catalase and was not dependent on H2O2. The reaction was inhibited by superoxide dismutase, cytochrome c, EDTA, Mn2+, histidine, and DMPO, but not by hydroxyl radical scavengers such as ethanol and benzoate, The ESR spectrum of the reaction mixture showed the presence of the 1:2:2:1 quartet signal typical of a DMPO-OH adduct, but this was not modified by ethanol, This oxygen radical species, possibly of (OV)-O-. type derived from diperoxovanadate, is proposed to have a role in the reactions of oxygen release and NADH oxidation

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Generation of H2O2 by rat liver mitochondria with choline, glycerol 1-phosphate and proline as substrates has been shown by using high-concentration phosphate buffer. Rates obtained under these conditions were higher and more consistent as compared with the earlier reports with high-concentration mannitol/sucrose/Tris buffer. Sulphate ions could replace phosphate indicating a requirement for a high concentration of oxygen-containing anions. H2O2 generation was dependent on the presence of native mitochondria and substrate. Maximal rates with various substrates were found to be the same as with succinate. Values of Km and Vmax for H2O2 generation were considerably less than those obtained for respective dehydrogenase activities, measured by dye reduction. Scavengers of O2-. and OH. inhibited generation of H2O2. ATP, ADP, thyronine derivatives and a number of phenolic compounds also showed very potent inhibitory effects of H2O2 generation, whereas phenyl compound had no effect. Phenolic compounds did not have any effect on mitochondrial superoxide dismutase and choline dehydrogenase activities as well as on O2-. generation by the xanthine-xanthine oxidase system. Inhibition by phenolic compounds may have potential for regulation of the intracellular concentration of H2O2, that is not considered to have a "second messenger' function.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The oxidation of NADH by mouse liver plasma membranes was shown to be accompanied by the formation of H2O2. The rate of H2O2 formation was less than one-tenth the rate of oxygen uptake and much slower than the rate of reduction of artificial electron acceptors. The optimum pH for this reaction was 7.0 and theK m value for NADH was found to be 3×10–6 M. The H2O2-generating system of plasma membranes was inhibited by quinacrine and azide, thus distinguishing it from similar activities in endoplasmic reticulum and mitochondria. Both NADH and NADPH served as substrates for plasma membrane H2O2 generation. Superoxide dismutase and adriamycin inhibited the reaction. Vanadate, known to stimulate the oxidation of NADH by plasma membranes, did not increase the formation of H2O2. In view of the growing evidence that H2O2 can be involved in metabolic control, the formation of H2O2 by a plasma membrane NAD(P)H oxidase system may be pertinent to control sites at the plasma membrane.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Metl oxalate hydrazinates MC2O4·2 N2H4 where M=Mg, Mn, Fe, Co, Ni, Cu, Zn and Cd have been prepared and characterised by chemical analysis and infrared spectra. Thermal reactivity and decomposition of these oxalato complexes have been studied using thermogravimetry and differential thermal analysis. Hydrazinates of Mn, Fe, Co, Ni and Cu oxalates exhibit autocatalytic decomposition behaviour whereas the others do not. This phenomenon can be attributed to the presence of a bridged hydrazine as well as the thermal stability of the anhydrous metal oxalates.