52 resultados para C-H ACTIVATION

em Indian Institute of Science - Bangalore - Índia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

An enantiospecific synthesis of the angular triquinane system present in the sesquiterpenes cameroonanes and silphiperfolanes has been accomplished, starting from 5-isopropenyl-2-methylcyclopent-1-ene-1-methanol [readily available in three steps from (R)-limonene] employing an intramolecular rhodium carbenoid insertion into the C-H bond of a tertiary methyl group for the construction of the triquinane system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a detailed study on the behavior of vinylcyclopropanes as masked donor acceptor system toward the stereoselective synthesis of Z-alkylidenetetrahydrofurans. Results of bromenium catalyzed indirect activation of C-C bond of vinylcyclopropanes and concomitant cyclization to alkylidenetetrahydrofuran and other heterocycles have been discussed. The stereoselective formation of the Z-isomer is strongly controlled by the extent of destabilization of one of the gauche conformers of the vinylcyclopropane. The ring-opening/cyclization step was found to be stereospecific as in the case of DA cyclopropanes. The activation of the C-C bond leads to a tight-carbocation intermediate, which is evident from the complete retention of the stereochemistry. The retention of configuration has been established by a necessary control experiment that rules out the possibility of a double inversion pathway. The present results serve as direct stereochemical evidence in support of a tight ion-pair intermediate versus the controversial S(N)2 pathway. A 2D potential energy scan has been carried out at B3LYP/6-31G(d) level theory to obtain the relative energies of the conformers. The Z-selectivity observed has been explained on the basis of the relative population of the conformers and modeling the intermediate and transition state involved in the reaction at M06-2x/6-31+G(d) level. Energy profile for the cyclization step was modeled considering various possible pathways through which cyclization can happen. The methodology has been successfully demonstrated on vinylcyclobutanes as well.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A highly regioselective functionalization of indole at the C-4 position by employing an aldehyde functional group as a directing group, and Ru as a catalyst, under mild reaction conditions (open flask) has been uncovered. This strategy to synthesize 4-substituted indoles is important, as this class of privileged molecules serves as a precursor for ergot alkaloids and related heterocyclic compounds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A computational study of the interaction half-sandwich metal fragments (metal=Re/W, electron count=d(6)), containing linear nitrosyl (NO+), carbon monoxide (CO), trifluorophosphine (PF3), N-heterocyclic carbene (NHC) ligands with alkanes are conducted using density functional theory employing the hybrid meta-GGA functional (M06). Electron deficiency on the metal increases with the ligand in the order NHC < CO < PF3 < NO+. Electron-withdrawing ligands like NO+ lead to more stable alkane complexes than NHC, a strong electron donor. Energy decomposition analysis shows that stabilization is due to orbital interaction involving charge transfer from the alkane to the metal. Reactivity and dynamics of the alkane fragment are facilitated by electron donors on the metal. These results match most of the experimental results known for CO and PF3 complexes. The study suggests activation of alkane in metal complexes to be facile with strong donor ligands like NHC. (C) 2015 Wiley Periodicals, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A 1,4-addition with the nucleophilic center generated at the ortho carbon atom of an aromatic ketone in the presence of the highly reactive alpha-C-H bond, using a directing group strategy, is presented. The reaction yields pharmaceutically useful 3-arylated succinimide derivatives. In order to gain understanding of this redox neutral reaction, despite the presence of copper acetate, and to substantiate the lack of Heck-type products, DFT calculations have been carried out.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Synthesis of 3-(indol-2-yl)succinimide derivatives is presented using a directing group strategy. Selective functionalization of C-2 in the presence of highly reactive C-3 in indole derivatives has been achieved. A conjugate addition product instead of Heck-type product has been brought about by careful selection of the alkene partner (maleimides and maleate esters) such that a beta-hydride elimination is avoided.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A small-cluster approximation has been used to calculate the activation barriers for the d.c. conductivity in ionic glasses. The main emphasis of this approach is on the importance of the hitherto ignored polarization energy contribution to the total activation energy. For the first time it has been demonstrated that the d.c. conductivity activation energy can be calculated by considering ionic migration to a neighbouring vacancy in a smali cluster of ions consisting of face-sharing anion polyhedra. The activation energies from the model calculations have been compared with the experimental values in the case of highly modified lithium thioborate glasses.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Transactivator protein C is required for the expression of bacteriophage Mu late genes from lys, I, P and mom promoters during lytic life cycle of the phage. The mechanism of transcription activation of mom gene by C protein is well understood. C activates transcription at Pmom by initial unwinding of the promoter DNA, thereby facilitating RNA polymerase (RNAP) recruitment. Subsequently, C interacts with the (sic) subunit of RNAP to enhance promoter clearance. The mechanism by which C activates other late genes of the phage is not known. We carried out promoter-polymerase interaction studies with all the late gene promoters to determine the individual step of C mediated activation. Unlike at P-mom, at the other three promoters, RNAP recruitment and closed complex formation are not C dependent. Instead, the action of C at P-lys, P-I, and P-P is during the isomerization from closed complex to open complex with no apparent effect at other steps of initiation pathway. The mechanism of transcription activation of mom and other late promoters by their common activator is different. This distinction in the mode of activation (promoter recruitment and escape versus isomerization) by the same activator at different promoters appears to be important for optimized expression of each of the late genes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Enthalpy changes of the crystal-plastic and plastic-liquid transitions are related to the temperature range of stability of the plastic phase. Thermodynamics of the plastic state of binary mixtures have been examined. Infrared correlation times, τc, and activation energies have been measured for a few molecules in the plastic state. Molecular tumbling times, τt, have also been measured employing ESR spectra of a spin-probe. Plots of log τc(τt) 1/T are continuous through the plastic-liquid transition. Activation energies for molecular motion seem to vary in the same direction as the ΔH of the plastic-crystal transition. Infrared correlation times of solute molecules in binary solutions in the plastic and the liquid states show interesting variations with solute concentration.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The fluorescence of N-dansylgalactosamine [N-(5-dimethylaminonaphthalene-1-sulphonyl)galactosamine] was enhanced 11-fold with a 25 nm blue-shift in the emission maximum upon binding to soya-bean agglutinin (SBA). This change was used to determine the association constants and thermodynamic parameters for this interaction. The association constant of 1.51 X 10(6) M-1 at 20 degrees C indicated a very strong binding, which is mainly due to a relatively small entropy value, as revealed by the thermodynamic parameters: delta G = -34.7 kJ X mol-1, delta H = -37.9 kJ X mol-1 and delta S = -10.9 J X mol-1 X K-1. The specific binding of this sugar to SBA shows that the lectin can accommodate a large hydrophobic substituent on the C-2 of galactose. Binding of non-fluorescent ligands, studied by monitoring the fluorescence changes when they are added to a mixture of SBA and N-dansylgalactosamine, indicates that a hydrophobic substituent at the anomeric position increases the affinity of the interaction. The C-6 hydroxy group also stabilizes the binding considerably. Kinetics of binding of N-dansylgalactosamine to SBA studied by stopped-flow spectrofluorimetry are consistent with a single-step mechanism and yielded k+1 = 2.4 X 10(5) M-1 X s-1 and k-1 = 0.2 s-1 at 20 degrees C. The activation parameters indicate an enthalpicly controlled association process.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The combustion technique produces ionically dispersed Ag on a nano-crystalline CeO2 surface. The catalysts thus produced were characterized by X-ray diffraction, transmission electron microscopy and X-ray photoelectron spectroscopy. Catalytic properties towards NO reduction, CO and hydrocarbon oxidation have been investigated using the temperature programmed reaction technique in a packed bed tubular reactor. These results are compared with alpha-Al2O3 supported finely divided Ag metal particles synthesized by the same method. Both oxidation and reduction reactions over Ag/CeO2 have been observed to occur at lower temperatures compared to Ag/Al2O3. The rate and turnover frequency of the NO+CO reaction over 1% Ag/CeO2 are 56.3 mu mol g(-1) s(-1) and 0.97 s(-1) at 225 degrees C respectively. Activation energy (E-a) values are 71 and 67 kJ mol(-1) for CO+O-2 and NO+CO reactions, respectively, over 1% Ag/CeO2 catalyst.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

P>Transcription activator C employs a unique mechanism to activate mom gene of bacteriophage Mu. The activation process involves, facilitating the recruitment of RNA polymerase (RNAP) by altering the topology of the promoter and enhancing the promoter clearance by reducing the abortive transcription. To understand the basis of this multi-step activation mechanism, we investigated the nature of the physical interaction between C and RNAP during the process. A variety of assays revealed that only DNA-bound C contacts the beta' subunit of RNAP. Consistent to these results, we have also isolated RNAP mutants having mutations in the beta' subunit which were compromised in C-mediated activation. Mutant RNAPs show reduced productive transcription and increased abortive initiation specifically at the C-dependent mom promoter. Positive control (pc) mutants of C, defective in interaction with RNAP, retained the property of recruiting RNAP to the promoter but were unable to enhance promoter clearance. These results strongly suggest that the recruitment of RNAP to the mom promoter does not require physical interaction with C, whereas a contact between the beta' subunit and the activator, and the subsequent allosteric changes in the active site of the enzyme are essential for the enhancement of promoter clearance.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nanocrystalline Nd2O3:Ni2+ (2 mol%) phosphor has been prepared by a low temperature (similar to 400 degrees C) solution combustion method, in a very short time (<5 min). Powder X-ray diffraction results confirm the single hexagonal phase of nanopowders. Scanning electron micrographs show that nanophosphor has porous nature and the particles are agglomerated. Transmission electron microscopy confirms the nanosize (20-25 nm) of the crystallites. The electron paramagnetic resonance (EPR) spectrum exhibits a symmetric absorption at g approximate to 2.77 which suggests that the site symmetry around Ni2+ ions is predominantly octahedral. The number of spins participating in resonance (N) and the paramagnetic susceptibility (chi) has been evaluated. Raman study show major peaks, which are assigned to F-g and combination of A(g) + E-g modes. Thermoluminescence (TL) studies reveal well resolved glow peaks at 169 degrees C along with shoulder peak at around 236 degrees C. The activation energy (E in eV), order of kinetics (b) and frequency factor (s) were estimated using glow peak shape method. It is observed that the glow peak intensity at 169 degrees C increases linearly with gamma-dose which suggest that Nd2O3:Ni2+ is suitable for radiation dosimetry applications. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Reaction of cis-Cl2Pt(S(O)Me-2)(2)] with 1 equiv of sym-N,N',N `'-triarylguanidines, ArN=C(NHAr)(2) (sym = symmetrical; Ar = 2-MeC6H4 (LH22-tolyl), 2-(MeO)C6H4 (LH22-anisyl), 4-MeC6H4 (LH24-tolyl), 2,5-Me2C6H3 (LH22,5-xylyl), and 2,6-Me2C6H3 (LH22,6-xylyl)) in toluene under reflux condition for 3 h afforded cis- or trans-Cl2Pt(S(O)Me-2)(ArN=C(NHAr)(2))] (Ar = 2-MeC6H4 (1), 2-(MeO)C6H4 (2), 4-MeC6H4 (3), 2,5-h Me2C6H3 (4), and 2,6-Me2C6H3 (5), respectively) in 83-96% yield. Reaction of cis-Cl2Pt(S(O)Me-2)(2)] with 1 equiv of LH22-tolyl and LH24-tolyl in the presence of 1 equiv of NaOAc in methanol under reflux condition for 3 h afforded acetate-substituted products, cis-(AcO)ClPt(S(O)Me-2)(ArN=C(NHAr)(2))] (Ar = 2-MeC6H4 (6) and 4-MeC6H4 (7)) in 83% and 84% yields, respectively. Reaction of cis-Cl2Pt(S(O)Me-2)(2)] with 1 equiv of LH22-anisyl and LH22-tolyl in the presence of 1 equiv of NaOAc in methanol under reflux condition for 3 and 12 h afforded six-membered C,N] platinacycles, Pt{kappa(2)(C,N)-C6H3R-3(NHC(NHAr)(=NAr))-2}Cl(S(O)Me-2)] (Ar = 2-RC6H4; R = OMe (8) and Me (9)), in 92% and 79% yields, respectively. The new complexes have been characterized by analytical and spectroscopic techniques, and further the molecular structures of 1, 2, 4, 5, 6, and 8 have been determined by single-crystal X-ray diffraction. The platinum atom in 1, 4, and 5 exhibited the trans configuration, while that in 2, 6, and 8 exhibited the cis configuration. Complex 6 is shown to be the precursor for 9, and the former is suggested to transform to the latter possibly via an intramolecular C-H activation followed by elimination of AcOH. The solution behavior of new complexes has been studied by multinuclear NMR (H-1, Pt-195, and C-13) spectroscopy. The new complexes exist exclusively as a single isomer (trans (1 and 5) and cis (6 and 7)), a mixture of cis and trans isomers with the former isomer being predominant in the case of 2 and the latter isomer being predominant in the case of 3. Complex 5 in the trans form revealed the presence of one isomer at 0.007 mM concentration and two isomers in about 1.00:0.12 ratio at 0.154 mM concentration as revealed by H-1 NMR spectroscopy, and this has been ascribed to the restricted Pt-S bond rotation at higher concentration. Platinacycle 8 exists as one isomer, while 9 exists as a mixture of seven isomers in solution. The influence of steric factor, pi-acceptor property of the guanidine, subtle solid-state packing forces upon the configuration of the platinum atom, and the number of isomers in solution have been outlined. Factors that accelerate or slow down the cycloplatination reaction, the role of NaOAc, and a plausible mechanism of this reaction have been discussed.