31 resultados para Blades

em Indian Institute of Science - Bangalore - Índia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The non-linear equations of motion of a rotating blade undergoing extensional and flapwise bending vibration are derived, including non-linearities up to O (ε3). The strain-displacement relationship derived is compared with expressions derived by earlier investigators and the errors and the approximations made in some of those are brought out. The equations of motion are solved under the inextensionality condition to obtain the influence of the amplitude on the fundamental flapwise natural frequency of the rotating blade. It is found that large finite amplitudes have a softening effect on the flapwise frequency and that this influence becomes stronger at higher speeds of rotation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The non-linear equations of motion of a rotating blade undergoing extensional and flapwise bending vibration are derived, including non-linearities up to O (ε3). The strain-displacement relationship derived is compared with expressions derived by earlier investigators and the errors and the approximations made in some of those are brought out. The equations of motion are solved under the inextensionality condition to obtain the influence of the amplitude on the fundamental flapwise natural frequency of the rotating blade. It is found that large finite amplitudes have a softening effect on the flapwise frequency and that this influence becomes stronger at higher speeds of rotation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An isolated rotor with blades interconnected through viscoelastic elements is analyzed for response, loads and stability in moment trim under forward flight conditions. A conceptual model of a multibladed rotor with rigid flap and lag motions is considered, Although the interconnecting elements are placed in the In-plane direction, considerable coupling between the flap-lag motions of the blades can occur in certain ranges of interblade element stiffness. Interblade coupling can yield significant changes in the response, loads and stability which are dependent on the interblade element and rotor parameters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper deals with modeling of the first damage mode, matrix micro-cracking, in helicopter rotor/wind turbine blades and how this effects the overall cross-sectional stiffness. The helicopter/wind turbine rotor system operates in a highly dynamic and unsteady environment leading to severe vibratory loads present in the system. Repeated exposure to this loading condition can induce damage in the composite rotor blades. These rotor/turbine blades are generally made of fiber-reinforced laminated composites and exhibit various competing modes of damage such as matrix micro-cracking, delamination, and fiber breakage. There is a need to study the behavior of the composite rotor system under various key damage modes in composite materials for developing Structural Health Monitoring (SHM) system. Each blade is modeled as a beam based on geometrically non-linear 3-D elasticity theory. Each blade thus splits into 2-D analyzes of cross-sections and non-linear 1-D analyzes along the beam reference curves. Two different tools are used here for complete 3-D analysis: VABS for 2-D cross-sectional analysis and GEBT for 1-D beam analysis. The physically-based failure models for matrix in compression and tension loading are used in the present work. Matrix cracking is detected using two failure criterion: Matrix Failure in Compression and Matrix Failure in Tension which are based on the recovered field. A strain variable is set which drives the damage variable for matrix cracking and this damage variable is used to estimate the reduced cross-sectional stiffness. The matrix micro-cracking is performed in two different approaches: (i) Element-wise, and (ii) Node-wise. The procedure presented in this paper is implemented in VABS as matrix micro-cracking modeling module. Three examples are presented to investigate the matrix failure model which illustrate the effect of matrix cracking on cross-sectional stiffness by varying the applied cyclic

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A finite-state wake model is used to investigate aeromechanical stability of hingeless-rotor helicopters in the ground-contact, hover and trimmed-night conditions. The investigation covers three items: (1) the convergence of the damping with increasing number of wake harmonics for the lag regressing, and body pitch and roll modes; (2) a parametric study of the damping over a range of thrust level, advance ratio and number of blades; and (3) correlations, primarily with the damping and frequency measurements of these lag and body modes. The convergence and parametric studies are conducted in the hover and trimmed-flight conditions; they include predictions from the widely used dynamic inflow model. The correlations are conducted in the ground-contact conditions and include predictions from the dynamic inflow and vortex models; recently, this vortex model is proposed for the axial-flight conditions and is used to investigate the coupled free vibrations of rotor flapping and body modes. The convergence and parametric studies show that a finite-state wake model that goes well beyond the dynamic inflow model is required for fairly converged damping, Moreover, the correlations from the finite-state wake, dynamic inflow and vortex models are generally satisfactory.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we have used the method of characteristics developed for two dimensional unsteady flow problems to study a simplified axial turbine problem. The system consists of two sets of blades —the guiding vanes which are fixed and the rotor blades which move perpendicular to these vanes. The initial undisturbed constant flow in the system is perturbed by introducing a small velocity normal to the rotor blades to simulate a slight constant inclination. The resulting perturbed flow is periodic after the first three cycles. We have studied the perturbed density distribution throughout the system during a period.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rotor flap-lag stability in forward flight is studied with and without dynamic inflow feedback via a multiblade coordinate transformation (MCT). The algebra of MCT is found to be so involved that it requires checking the final equations by independent means. Accordingly, an assessment of three derivation methods is given. Numerical results are presented for three- and four-bladed rotors up to an advance ratio of 0.5. While the constant-coefficient approximation under trimmed conditions is satisfactory for low-frequency modes, it is not satisfactory for high-frequency modes or for untrimmed conditions. The advantages of multiblade coordinates are pronounced when the blades are coupled by dynamic inflow.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The study on the formation and growth of topological close packed (TCP) compounds is important to understand the performance of turbine blades in jet engine applications. These deleterious phases grow mainly by diffusion process in the superalloy substrate. Significant volume change was found because of growth of the p phase in Co-Mo system. Growth kinetics of this phase and different diffusion parameters, like interdiffusion, intrinsic and tracer diffusion coefficients are calculated. Further the activation energy, which provides an idea about the mechanism, is determined. Moreover, the interdiffusion coefficient in Co(Mo) solid solution and impurity diffusion coefficient of Mo in Co are determined.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This article analyzes the effect of devising a new failure envelope by the combination of the most commonly used failure criteria for the composite laminates, on the design of composite structures. The failure criteria considered for the study are maximum stress and Tsai-Wu criteria. In addition to these popular phenomenological-based failure criteria, a micromechanics-based failure criterion called failure mechanism-based failure criterion is also considered. The failure envelopes obtained by these failure criteria are superimposed over one another and a new failure envelope is constructed based on the lowest absolute values of the strengths predicted by these failure criteria. Thus, the new failure envelope so obtained is named as most conservative failure envelope. A minimum weight design of composite laminates is performed using genetic algorithms. In addition to this, the effect of stacking sequence on the minimum weight of the laminate is also studied. Results are compared for the different failure envelopes and the conservative design is evaluated, with respect to the designs obtained by using only one failure criteria. The design approach is recommended for structures where composites are the key load-carrying members such as helicopter rotor blades.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A health-monitoring and life-estimation strategy for composite rotor blades is developed in this work. The cross-sectional stiffness reduction obtained by physics-based models is expressed as a function of the life of the structure using a recent phenomenological damage model. This stiffness reduction is further used to study the behavior of measurable system parameters such as blade deflections, loads, and strains of a composite rotor blade in static analysis and forward flight. The simulated measurements are obtained using an aeroelastic analysis of the composite rotor blade based on the finite element in space and time with physics-based damage modes that are then linked to the life consumption of the blade. The model-based measurements are contaminated with noise to simulate real data. Genetic fuzzy systems are developed for global online prediction of physical damage and life consumption using displacement- and force-based measurement deviations between damaged and undamaged conditions. Furthermore, local online prediction of physical damage and life consumption is done using strains measured along the blade length. It is observed that the life consumption in the matrix-cracking zone is about 12-15% and life consumption in debonding/delamination zone is about 45-55% of the total life of the blade. It is also observed that the success rate of the genetic fuzzy systems depends upon the number of measurements, type of measurements and training, and the testing noise level. The genetic fuzzy systems work quite well with noisy data and are recommended for online structural health monitoring of composite helicopter rotor blades.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work addresses the optimum design of a composite box-beam structure subject to strength constraints. Such box-beams are used as the main load carrying members of helicopter rotor blades. A computationally efficient analytical model for box-beam is used. Optimal ply orientation angles are sought which maximize the failure margins with respect to the applied loading. The Tsai-Wu-Hahn failure criterion is used to calculate the reserve factor for each wall and ply and the minimum reserve factor is maximized. Ply angles are used as design variables and various cases of initial starting design and loadings are investigated. Both gradient-based and particle swarm optimization (PSO) methods are used. It is found that the optimization approach leads to the design of a box-beam with greatly improved reserve factors which can be useful for helicopter rotor structures. While the PSO yields globally best designs, the gradient-based method can also be used with appropriate starting designs to obtain useful designs efficiently. (C) 2006 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper investigates the feasibility of an on-line damage detection capability for helicopter main rotor blades made of composite material. Damage modeled in the composite is matrix cracking. A box-beam with stiffness properties similar to a hingeless rotor blade is designed using genetic algorithm for the typical [+/-theta(m)/90(n)](s) family of composites. The effect of matrix cracks is included in an analytical model of composite box-beam. An aeroelastic analysis of the helicopter rotor based on finite elements in space and time is used to study the effects of matrix cracking in the rotor blade in forward flight. For global fault detection, rotating frequencies, tip bending and torsion response, and blade root loads are studied. It is observed that the effect of matrix cracking on lag bending and elastic twist deflection at the blade tip and blade root yawing moment is significant and these parameters can be monitored for online health monitoring. For implementation of local fault detection technique, the effect on axial and shear strain, for matrix cracks in the whole blade as well as matrix cracks occurring locally is studied. It is observed that using strain measurement along the blade it is possible to locate the matrix cracks as well as to predict density of matrix cracks. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Study of interdiffusion in the Co-Mo system is important to understand the performance of turbine blades in jet engine applications. Mo is added to superalloys to increase the solid solution strengthening and the creep resistance. In this study, the interdiffusion coefficient in the Co(Mo) solid solution and impurity diffusion coefficient of Mo in Co are determined. Further, the activation energy and pre-exponential factors are calculated, which provide an idea about the atomic mechanism of diffusion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose - This paper aims to validate a comprehensive aeroelastic analysis for a helicopter rotor with the higher harmonic control aeroacoustic rotor test (HART-II) wind tunnel test data. Design/methodology/approach - Aeroelastic analysis of helicopter rotor with elastic blades based on finite element method in space and time and capable of considering higher harmonic control inputs is carried out. Moderate deflection and coriolis nonlinearities are included in the analysis. The rotor aerodynamics are represented using free wake and unsteady aerodynamic models. Findings - Good correlation between analysis and HART-II wind tunnel test data is obtained for blade natural frequencies across a range of rotating speeds. The basic physics of the blade mode shapes are also well captured. In particular, the fundamental flap, lag and torsion modes compare very well. The blade response compares well with HART-II result and other high-fidelity aeroelastic code predictions for flap and torsion mode. For the lead-lag response, the present analysis prediction is somewhat better than other aeroelastic analyses. Research limitations/implications - Predicted blade response trend with higher harmonic pitch control agreed well with the wind tunnel test data, but usually contained a constant offset in the mean values of lead-lag and elastic torsion response. Improvements in the modeling of the aerodynamic environment around the rotor can help reduce this gap between the experimental and numerical results. Practical implications - Correlation of predicted aeroelastic response with wind tunnel test data is a vital step towards validating any helicopter aeroelastic analysis. Such efforts lend confidence in using the numerical analysis to understand the actual physical behavior of the helicopter system. Also, validated numerical analyses can take the place of time-consuming and expensive wind tunnel tests during the initial stage of the design process. Originality/value - While the basic physics appears to be well captured by the aeroelastic analysis, there is need for improvement in the aerodynamic modeling which appears to be the source of the gap between numerical predictions and HART-II wind tunnel experiments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose - The purpose of this paper is to discuss published research in rotorcraft which has taken place in India during the last ten years The helicopter research is divided into the following parts health monitoring smart rotor design optimization control helicopter rotor dynamics active control of structural response (ACSR) and helicopter design and development Aspects of health monitoring and smart rotor are discussed in detail Further work needed and areas for international collaboration are pointed out Design/methodology/approach - The archival journal papers on helicopter engineering published from India are obtained from databases and are studied and discussed The contribution of the basic research to the state of the art in helicopter engineering science is brought out Findings - It is found that strong research capabilities have developed in rotor system health and usage monitoring rotor blade design optimization ACSR composite rotor blades and smart rotor development Furthermore rotorcraft modeling and analysis aspects are highly developed with considerable manpower available and being generated in these areas Practical implications - Two helicopter projects leading to the advanced light helicopter and light combat helicopter have been completed by Hindustan Aeronautics Ltd These helicopter programs have benefited from the basic research and also provide platforms for further basic research and deeper industry academic collaborations The development of well trained helicopter engineers is also attractive for international helicopter design and manufacturing companies The basic research done needs to be further developed for practical and commercial applications Originality/value - This is the first comprehensive research on rotorcraft research in India an important emerging market manufacturing and sourcing destination for the industry