15 resultados para Basophil Degranulation Test -- methods

em Indian Institute of Science - Bangalore - Índia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Combustion is a complex phenomena involving a multiplicity of variables. Some important variables measured in flame tests follow [1]. In order to characterize ignition, such related parameters as ignition time, ease of ignition, flash ignition temperature, and self-ignition temperature are measured. For studying the propagation of the flame, parameters such as distance burned or charred, area of flame spread, time of flame spread, burning rate, charred or melted area, and fire endurance are measured. Smoke characteristics are studied by determining such parameters as specific optical density, maximum specific optical density, time of occurrence of the densities, maximum rate of density increase, visual obscuration time, and smoke obscuration index. In addition to the above variables, there are a number of specific properties of the combustible system which could be measured. These are soot formation, toxicity of combustion gases, heat of combustion, dripping phenomena during the burning of thermoplastics, afterglow, flame intensity, fuel contribution, visual characteristics, limiting oxygen concentration (OI), products of pyrolysis and combustion, and so forth. A multitude of flammability tests measuring one or more of these properties have been developed [2]. Admittedly, no one small scale test is adequate to mimic or assess the performance of a plastic in a real fire situation. The conditions are much too complicated [3, 4]. Some conceptual problems associated with flammability testing of polymers have been reviewed [5, 6].

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using a combination of avidin-biotin microELISA and solid phase radioimmunoassay, we examined sera from 23 patients with systemic lupus erythematosus (SLE), two patients with established sensitivity to ingested shrimp, and 15 healthy normal subjects. In addition to IgG antibodies, varying amounts of IgE antibodies specific for native DNA (nDNA), denatured or single-stranded DNA (dnDNA), RNA, and tRNA were demonstrable in the sera of SLE patients, but not in the sera of normal subjects. A comparison of the specificity of nucleic acid-specific IgE antibodies present in the sera of shrimp-sensitive patients with those present in the sera of seven SLE patients revealed that the IgE antibodies in the sera of shrimp-sensitive patients specifically recognized shrimp tRNA but not yeast tRNA, calf thymus RNA, or calf thymus DNA, while those present in the sera of patients with SLE recognized all these nucleic acid antigens. The IgE antibodies directed against nDNA, dnDNA, RNA, and tRNA may mediate mast cell and basophil degranulation and thus contribute both to immediate-type hypersensitivity phenomena including hives seen in patients with SLE and to the localization of IgE-nucleic acid complexes in target

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transfer function coefficients (TFC) are widely used to test linear analog circuits for parametric and catastrophic faults. This paper presents closed form expressions for an upper bound on the defect level (DL) and a lower bound on fault coverage (FC) achievable in TFC based test method. The computed bounds have been tested and validated on several benchmark circuits. Further, application of these bounds to scalable RC ladder networks reveal a number of interesting characteristics. The approach adopted here is general and can be extended to find bounds of DL and FC of other parametric test methods for linear and non-linear circuits.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The test based on comparison of the characteristic coefficients of the adjancency matrices of the corresponding graphs for detection of isomorphism in kinematic chains has been shown to fail in the case of two pairs of ten-link, simple-jointed chains, one pair corresponding to single-freedom chains and the other pair corresponding to three-freedom chains. An assessment of the merits and demerits of available methods for detection of isomorphism in graphs and kinematic chains is presented, keeping in view the suitability of the methods for use in computerized structural synthesis of kinematic chains. A new test based on the characteristic coefficients of the “degree” matrix of the corresponding graph is proposed for detection of isomorphism in kinematic chains. The new test is found to be successful in the case of a number of examples of graphs where the test based on characteristic coefficients of adjancency matrix fails. It has also been found to be successful in distinguishing the structures of all known simple-jointed kinematic chains in the categories of (a) single-freedom chains with up to 10 links, (b) two-freedom chains with up to 9 links and (c) three-freedom chains with up to 10 links.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conformance testing focuses on checking whether an implementation. under test (IUT) behaves according to its specification. Typically, testers are interested it? performing targeted tests that exercise certain features of the IUT This intention is formalized as a test purpose. The tester needs a "strategy" to reach the goal specified by the test purpose. Also, for a particular test case, the strategy should tell the tester whether the IUT has passed, failed. or deviated front the test purpose. In [8] Jeron and Morel show how to compute, for a given finite state machine specification and a test purpose automaton, a complete test graph (CTG) which represents all test strategies. In this paper; we consider the case when the specification is a hierarchical state machine and show how to compute a hierarchical CTG which preserves the hierarchical structure of the specification. We also propose an algorithm for an online test oracle which avoids a space overhead associated with the CTG.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Six models (Simulators) are formulated and developed with all possible combinations of pressure and saturation of the phases as primary variables. A comparative study between six simulators with two numerical methods, conventional simultaneous and modified sequential methods are carried out. The results of the numerical models are compared with the laboratory experimental results to study the accuracy of the model especially in heterogeneous porous media. From the study it is observed that the simulator using pressure and saturation of the wetting fluid (PW, SW formulation) is the best among the models tested. Many simulators with nonwetting phase as one of the primary variables did not converge when used along with simultaneous method. Based on simulator 1 (PW, SW formulation), a comparison of different solution methods such as simultaneous method, modified sequential and adaptive solution modified sequential method are carried out on 4 test problems including heterogeneous and randomly heterogeneous problems. It is found that the modified sequential and adaptive solution modified sequential methods could save the memory by half and as also the CPU time required by these methods is very less when compared with that using simultaneous method. It is also found that the simulator with PNW and PW as the primary variable which had problem of convergence using the simultaneous method, converged using both the modified sequential method and also using adaptive solution modified sequential method. The present study indicates that pressure and saturation formulation along with adaptive solution modified sequential method is the best among the different simulators and methods tested.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the area of testing communication systems, the interfaces between systems to be tested and their testers have great impact on test generation and fault detectability. Several types of such interfaces have been standardized by the International Standardization Organization (ISO). A general distributed test architecture, containing distributed interfaces, has been presented in the literature for testing distributed systems based on the Open Distributing Processing (ODP) Basic Reference Model (BRM), which is a generalized version of ISO distributed test architecture. We study in this paper the issue of test selection with respect to such an test architecture. In particular, we consider communication systems that can be modeled by finite state machines with several distributed interfaces, called ports. A test generation method is developed for generating test sequences for such finite state machines, which is based on the idea of synchronizable test sequences. Starting from the initial effort by Sarikaya, a certain amount of work has been done for generating test sequences for finite state machines with respect to the ISO distributed test architecture, all based on the idea of modifying existing test generation methods to generate synchronizable test sequences. However, none studies the fault coverage provided by their methods. We investigate the issue of fault coverage and point out a fact that the methods given in the literature for the distributed test architecture cannot ensure the same fault coverage as the corresponding original testing methods. We also study the limitation of fault detectability in the distributed test architecture.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present paper, the constitutive model is proposed for cemented soils, in which the cementation component and frictional component are treated separately and then added together to get overall response. The modified Cam clay is used to predict the frictional resistance and an elasto-plastic strain softening model is proposed for the cementation component. The rectangular isotropic yield curve proposed by Vatsala (1995) for the bond component has been modified in order to account for the anisotropy generally observed in the case of natural soft cemented soils. In this paper, the model proposed is used to predict the experimental results of extension tests on the soft cemented soils whereas compression test results are presented elsewhere. The model predictions compare quite satisfactorily with the observed response. A few input parameters are required which are well defined and easily determinable and the model uses associated flow rule.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electrical failure of insulation is known to be an extremal random process wherein nominally identical pro-rated specimens of equipment insulation, at constant stress fail at inordinately different times even under laboratory test conditions. In order to be able to estimate the life of power equipment, it is necessary to run long duration ageing experiments under accelerated stresses, to acquire and analyze insulation specific failure data. In the present work, Resin Impregnated Paper (RIP) a relatively new insulation system of choice used in transformer bushings, is taken as an example. The failure data has been processed using proven statistical methods, both graphical and analytical. The physical model governing insulation failure at constant accelerated stress has been assumed to be based on temperature dependent inverse power law model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Present study performs the spatial and temporal trend analysis of annual, monthly and seasonal maximum and minimum temperatures (t(max), t(min)) in India. Recent trends in annual, monthly, winter, pre-monsoon, monsoon and post-monsoon extreme temperatures (t(max), t(min)) have been analyzed for three time slots viz. 1901-2003,1948-2003 and 1970-2003. For this purpose, time series of extreme temperatures of India as a whole and seven homogeneous regions, viz. Western Himalaya (WH), Northwest (NW), Northeast (NE), North Central (NC), East coast (EC), West coast (WC) and Interior Peninsula (IP) are considered. Rigorous trend detection analysis has been exercised using variety of non-parametric methods which consider the effect of serial correlation during analysis. During the last three decades minimum temperature trend is present in All India as well as in all temperature homogeneous regions of India either at annual or at any seasonal level (winter, pre-monsoon, monsoon, post-monsoon). Results agree with the earlier observation that the trend in minimum temperature is significant in the last three decades over India (Kothawale et al., 2010). Sequential MK test reveals that most of the trend both in maximum and minimum temperature began after 1970 either in annual or seasonal levels. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The RILEM work-of-fracture method for measuring the specific fracture energy of concrete from notched three-point bend specimens is still the most common method used throughout the world, despite the fact that the specific fracture energy so measured is known to vary with the size and shape of the test specimen. The reasons for this variation have also been known for nearly two decades, and two methods have been proposed in the literature to correct the measured size-dependent specific fracture energy (G(f)) in order to obtain a size-independent value (G(F)). It has also been proved recently, on the basis of a limited set of results on a single concrete mix with a compressive strength of 37 MPa, that when the size-dependent G(f) measured by the RILEM method is corrected following either of these two methods, the resulting specific fracture energy G(F) is very nearly the same and independent of the size of the specimen. In this paper, we will provide further evidence in support of this important conclusion using extensive independent test results of three different concrete mixes ranging in compressive strength from 57 to 122 MPa. (c) 2013 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, the governing equations for free vibration of a non-homogeneous rotating Timoshenko beam, having uniform cross-section, is studied using an inverse problem approach, for both cantilever and pinned-free boundary conditions. The bending displacement and the rotation due to bending are assumed to be simple polynomials which satisfy all four boundary conditions. It is found that for certain polynomial variations of the material mass density, elastic modulus and shear modulus, along the length of the beam, the assumed polynomials serve as simple closed form solutions to the coupled second order governing differential equations with variable coefficients. It is found that there are an infinite number of analytical polynomial functions possible for material mass density, shear modulus and elastic modulus distributions, which share the same frequency and mode shape for a particular mode. The derived results are intended to serve as benchmark solutions for testing approximate or numerical methods used for the vibration analysis of rotating non-homogeneous Timoshenko beams.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a survey on different numerical interpolation schemes used for two-phase transient heat conduction problems in the context of interface capturing phase-field methods. Examples are general transport problems in the context of diffuse interface methods with a non-equal heat conductivity in normal and tangential directions to the interface. We extend the tonsorial approach recently published by Nicoli M et al (2011 Phys. Rev. E 84 1-6) to the general three-dimensional (3D) transient evolution equations. Validations for one-dimensional, two-dimensional and 3D transient test cases are provided, and the results are in good agreement with analytical and numerical reference solutions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work sets forth a `hybrid' discretization scheme utilizing bivariate simplex splines as kernels in a polynomial reproducing scheme constructed over a conventional Finite Element Method (FEM)-like domain discretization based on Delaunay triangulation. Careful construction of the simplex spline knotset ensures the success of the polynomial reproduction procedure at all points in the domain of interest, a significant advancement over its precursor, the DMS-FEM. The shape functions in the proposed method inherit the global continuity (Cp-1) and local supports of the simplex splines of degree p. In the proposed scheme, the triangles comprising the domain discretization also serve as background cells for numerical integration which here are near-aligned to the supports of the shape functions (and their intersections), thus considerably ameliorating an oft-cited source of inaccuracy in the numerical integration of mesh-free (MF) schemes. Numerical experiments show the proposed method requires lower order quadrature rules for accurate evaluation of integrals in the Galerkin weak form. Numerical demonstrations of optimal convergence rates for a few test cases are given and the method is also implemented to compute crack-tip fields in a gradient-enhanced elasticity model.