52 resultados para BEB electron impact ionization cross section
em Indian Institute of Science - Bangalore - Índia
Resumo:
The effect of a magnetic field on the flow and oxygenation of an incompressible Newtonian conducting fluid in channels with irregular boundaries has been investigated. The geometric parameter δ, which is a ratio of the mean half width of the channel d to the characteristic length λ along the channel over which the significant changes in the flow quantities occur, has been used for perturbing the governing equations. Closed form solutions of the various order equations are presented for the stream function. The equations for oxygen partial pressure remain nonlinear even after perturbation, therefore a numerical solution is presented. The expressions for shear stress at a wall and pressure distributions are derived. Here the separation in the flow occurs at a higher Reynolds number than the corresponding non-magnetic case. It is found that the magnetic field has an effect on local oxygen concentration but has a little effect on the saturation length.
Resumo:
A modified DLTS technique is proposed for the direct measurement of capture cross-section of MOS surface states. The nature of temperature and energy dependence σn is inferred from data analysis. Temperature dependence of σn is shown to be consistent with the observed DLTS line shapes.
Resumo:
An oscillatory flow of a viscous incompressible fluid in an elastic tube of variable cross section has been investigated at low Reynolds number. The equations governing, the flow are derived under the assumption that the variation of the cross-section is slow in the axial direction for a tethered tube. The problem is then reduced to that of solving for the excess pressure from a second order ordinary differential equation with complex valued Bessel functions as the coefficients. This equation has been solved numerically for geometries of physiological interest and a comparison is made with some of the known theoretical and experimental results.
Resumo:
Oscillatory flow in a tube of slowly varying cross section is investigated in the presence of a uniform magnetic field in the axial direction. A perturbation solution including steady streaming is presented. The pressure and shear stress on the wall for various parameters governing the flow are discussed. Physics of Fluids is copyrighted by The American Institute of Physics.
Resumo:
In this paper we apply to the photoproduction total cross section a model we have proposed for purely hadronic processes and which is based on QCD mini-jets and soft gluon re-summation. We compare the predictions of our model with the HERA data as well as with other models. For cosmic rays, our model predicts substantially higher cross sections at TeV energies than models based on factorization, but lower than models based on mini-jets alone, without soft gluons. We discuss the origin of this difference.
Resumo:
For the non-linear bending of cantilever beams of variable cross-section, the effect of large deformations, but with linear elasticity, is considered. The governing integral equation is solved by a numerical iterative procedure. Results for some typical cases are obtained and compared with some of those available in the literature.
Resumo:
A model for total cross-sections incorporating QCD jet cross-sections and soft gluon resummation is described and compared with present data on pp and pp cross-sections. Predictions for LHC are presented for different parameter sets. It is shown that they differ according to the small x-behaviour of available parton density functions.
Resumo:
When a fluid with memory is injected into any flow region some assumptions regarding the initial state of stress have to be made in order to determine the state of stress at any subsequent instant. For a Maxwell fluid, it is assumed that the fluid near the surface of injection is suddenly stressed and responds by starting flow in accordance with the mechanical model chosen. The flow of a Maxwell fluid with a single relaxation time has been determined under the above assumption in the following two cases: (i) annulus between two porous concentric circular cylinders, and (ii) space between two porous and infinitely extending parallel plates. The nature of flow in the present case is similar to that of the Reiner-Rivlin fluids obtained by Narasimhan2).
Resumo:
The pulsatile flow of an incompressible viscous fluid in an elliptical pipe of slowly varying cross-section is considered. Asymptotic series solutions for the velocity distribution and pressure gradient are obtained in terms of Mathieu functions for a low Reynold number flow in which the volume flux is prescribed. An expression for shear stress on the boundary is derived. The physically significant quantities governing the flow are computed numerically and analysed for different types of constrictions. The effect of eccentricity and Womerslay parameter on the flow is discussed.
Resumo:
Numerical solutions are presented for the free convection boundary layers over cylinders of elliptic cross section embedded in a fluid-saturated porous medium. The transformed conservation equations of the nonsimilar boundary layers are solved numerically by an efficient finite-difference method. The theory was applied to a number of cylinders and the results compared very well with published analytical solutions. The results are of use in the design of underground electrical cables, power plant steam, and water distribution lines, among others.
Resumo:
Peristaltic transport of two fluids occupying the peripheral layer and the core in an elliptic tube is, investigated in elliptic cylindrical co-ordinate system, under long wavelength and low Reynolds number approximations. The effect of peripheral-layer viscosity on the flow rate and the frictional force for a slightly elliptic tube is discussed. The limiting results for the one-fluid model are obtained for different eccentricities of the undisturbed tube cross sections with the same area. As a result of non-uniformity of the peristaltic wave, two different amplitude ratios are defined and the time-averaged flux and mechanical efficiency are studied for different eccentricities. It is observed that the time-averaged flux is not affected significantly by the pressure drop when the eccentricity is large. For the peristaltic waves with same area variation, the pumping seems to improve with the eccentricity.
Resumo:
We study the total inelastic gamma gamma cross-section and discuss predictions from different models, with a special attention to their dependence on the input parameters. In particular we examine the results from a simple extension of the Regge Pomeron exchange model and those from the eikonalized mini-jet model. We then compare both of them with recent LEP data.