10 resultados para Attention-deficit and hyperactivity disorder
em Indian Institute of Science - Bangalore - Índia
Resumo:
M r = 188.22, monoclinic, P21/n, a = 6.219 (2), b= 10.508 (2), c=7.339 (1)A, t= 107.64 (2) °, V= 457 ,/k 3, Z = 2, D m - - 1.360 (3), D x = 1.366 (2)Mgm -3, ~,(MoKa) = 0.7107/~, #= 0.053 mm -I, F(000) = 200, T= 293 K. Final R = 5.8% for 614 significant reflections. The molecule, which does not possess a centre of symmetry, occupies a crystallographic centre of symmetry because of the statistical enantiomeric and rotational disorder. Latticeenergy calculations, based on van der Waals attractive and repulsive potentials, clearly show minima at the observed disordered positions.
Resumo:
Magnetotransport measurements in pulsed fields up to 15 T have been performed on mercury cadmium telluride (Hg1-xCdxTe, x similar to 0.2) bulk as well as liquid phase epitaxially grown samples to obtain the resistivity and conductivity tensors in the temperature range 220-300 K. Mobilities and densities of various carriers participating in conduction have been extracted using both conventional multicarrier fitting (MCF) and mobility spectrum analysis. The fits to experimental data, particularly at the highest magnetic fields, were substantially improved when MCF is applied to minimize errors simultaneously on both resistivity and conductivity tensors. The semiclassical Boltzmann transport equation has been solved without using adjustable parameters by incorporating the following scattering mechanisms to fit the mobility: ionized impurity, polar and nonpolar optical phonons, acoustic deformation potential, and alloy disorder. Compared to previous estimates based on the relaxation time approximation with outscattering only, polar optical scattering and ionized impurity scattering limited mobilities are shown to be larger due to the correct incorporation of the inscattering term taking into account the overlap integrals in the valence band.
Resumo:
We consider a one-dimensional mesoscopic Hubbard ring with and without disorder and compute charge and spin stiffness as a measure of the permanent currents. For finite disorder we identify critical disorder strength beyond which the charge currents in a system with repulsive interactions are larger than those for a free system. The spin currents in the disordered repulsive Hubbard model are enhanced only for small U, where the magnetic state of the system corresponds to a charge-density wave pinned to the impurities. For large U, the state of the system corresponds to localized isolated spins and the spin currents are found to be suppressed. For the attractive Hubbard model we find that the charge currents are always suppressed compared to the free system at all length scales.
Resumo:
Gamma-band (25-140 Hz) oscillations are ubiquitous in mammalian forebrain structures involved in sensory processing, attention, learning and memory. The optic tectum (01) is the central structure in a midbrain network that participates critically in controlling spatial attention. In this review, we summarize recent advances in characterizing a neural circuit in this midbrain network that generates large amplitude, space-specific, gamma oscillations in the avian OT, both in vivo and in vitro. We describe key physiological and pharmacological mechanisms that produce and regulate the structure of these oscillations. The extensive similarities between midbrain gamma oscillations in birds and those in the neocortex and hippocampus of mammals, offer important insights into the functional significance of a midbrain gamma oscillatory code.
Resumo:
Novel isoselenazoles with high glutathione peroxidase (GPx) and peroxiredoxin (Prx) activities provide remarkable cytoprotection to human cells, mainly by exhibiting antioxidant activities in the presence of cellular thiols. The cytotoxicity of the isoselenazoles is found to be significantly lower than that of ebselen, which is being clinically evaluated by several groups for the treatment of reperfusion injuries and stroke, hearing loss, and bipolar disorder. The compounds reported in this paper have the potential to be used as therapeutic agents for disorders mediated by reactive oxygen species.
Resumo:
Epitaxial bilayered thin films consisting of La0.6Sr0.4MnO3 (LSMO) and 0.7Pb(Mg1/3Nb2/3)O3â0.3PbTiO3 (PMN-PT) layers of relatively different thicknesses were fabricated on LaNiO3 coated LaAlO3 (100) single crystal substrates by pulsed laser ablation technique. The crystallinity, ferroelectric, ferromagnetic, and magnetodielectric properties have been studied for all the bilayered heterostructures. Their microstructural analysis suggested possible StranskiâKrastanov type of growth mechanism in the present case. Ferroelectric and ferromagnetic characteristics of these bilayered heterostructures over a wide range of temperatures confirmed their biferroic nature. The magnetization and ferroelectric polarization of the bilayered heterostructures were enhanced with increasing PMN-PT layer thickness owing to the effect of lattice strain. In addition, evolution of the ferroelectric and ferromagnetic properties of these heterostructures with changing thicknesses of the PMN-PT and LSMO layers indicated possible influence of several interfacial effects such as space charge, depolarization field, domain wall pinning, and spin disorder on the observed properties. Dielectric properties of these heterostructures studied over a wide range of temperatures under different magnetic field strengths suggested a possible role of elastic strain mediated magnetoelectric coupling behind the observed magnetodielectric effect in addition to the influence of rearrangement of the interfacial charge carriers under an applied magnetic field.
Resumo:
We compare magnetovolume effects in bulk and nanoparticles by performing Monte Carlo simulations of a spin-analogous model with coupled spatial and magnetic degrees of freedom and chemical disorder. We find that correlations between surface and bulk atoms lead with decreasing particle size to a substantial modification of the magnetic and elastic behavior at low temperatures.
Resumo:
Aim of the study: The medicinal plants are integral source of easily available remedy used in rural healthcare system. This study was conducted among three major ethnic groups namely the Nocte, the Nyishi and the Adi in the Eastern Himalayan region of Arunachal Pradesh to evaluate their comparative knowledge on medicinal plants. Materials and methods: The three remote districts of Arunachal Pradesh namely the Tirap, the Dibang Valley and the Papum Pare were surveyed through interviewing of randomly selected 237 participants using semi-structured questionnaire and regular field visits to selected districts. Results: We recorded the traditional use of 74 medicinal plants species belonging to 41 taxonomic plant families used for treating a total of 25 different diseases/ailments. The informant consensus factor (ICF) values demonstrated that local people tend to agree more with each other in terms of the plants used to treat malaria (0.71), jaundice (0.62), urological problems (0.56), dermatological disorders (0.45), pain (0.30), and respiratory disorder (0.33), and while the general health (0.15) and gastro-intestinal disorders category (0.28) were found low ICF values. Conclusion: Of the total 74 species recorded, the highest number of medicinal plants (36 species) was reported from the Adi of Lower Dibang Valley followed by the Nocte of the Tirap (25 species) and the Nyishi ethnic groups of Papum Pare districts (13 species). In the present study, we found that the men, elder people and illiterate ones had better knowledge on medicinal plants as compared to women, younger and literate people. Findings of this documentation study can be used as an ethnopharmacological basis for selecting plants for future phytochemical and pharmaceutical studies. (C) 2010 Elsevier Ireland Ltd. All rights reserved.
Resumo:
The role of the soft phase (Ni0.8Zn0.2Fe2O4) on the magnetization reversal and coercivity mechanism of the Ni0.8Zn0.2Fe2O4/BaFe12O19 nanocomposite has been investigated. The presence of the interacting field and the disorder in the nanocomposite has been confirmed by the variation of Jr/Jr(∞) vs Jd/Jr(∞) and the irreversible magnetization. To understand the relative strength of the pinning and the nucleation, the magnetic viscosity measurement has been done and the thermal activation volume has been estimated. From the Barbier plot and the activation volume measurement, the dominant mechanism governing the magnetization reversal process has been proposed.
Resumo:
Nanocomposites of hard (SrFe12O19) and soft ferrite (CoFe2O4) are prepared by mixing individual ferrite components at appropriate weight ratio and subsequent heat treatment. The magnetization of the composites showed hysteresis loop that is characteristic of the exchange spring system. The variation of J(r)/J(r)(infinity) vs. J(d)/J(r)(infinity) for these nanocomposites are investigated to understand the presence of both the interacting field and the disorder in the system. This is further corroborated with the First Order Reversal Curve analysis (FORC) on the nanocomposites of 1:4 (Cobalt Ferrite: Strontium Ferrite) and 1:16 (Cobalt Ferrite: Strontium Ferrite). The FORC distribution reveals that the pinning mechanism is stronger in the nanocomposite of 1:4 compared to 1:16. However, the nanocomposite of 1:16 exhibit superior exchange coupling strength in contrast to 1:4. The asymmetric nature of the FORC distribution at H-c = 0 Oe for both the nanocomposites validates the intercoupling between the reversible and irreversible magnetization. (C) 2015 Author(s).