85 resultados para Aperture height index
em Indian Institute of Science - Bangalore - Índia
Resumo:
Synthetic aperture radar (SAR) is a powerful tool for mapping and remote sensing. The theory and operation of SAR have seen a period of intense activity in recent years. This paper attempts to review some of the more advanced topics studied in connection with modern SAR systems based on digital processing. Following a brief review of the principles involved in the operation of SAR, attention is focussed on special topics such as advanced SAR modelling and focussing techniques, in particular clutterlock and autofocus, Doppler centroid (DC) estimation methods involving seismic migration technique, moving target imaging, bistatic radar imaging, effects of system nonlinearities, etc.
Resumo:
Bentonite, commonly used for liner constructions in waste containment systems, possesses many limitations. Illite or illite containing bentonite has been proposed as an alternative material for liner construction. Their properties in different types of pore fluids are important to assess the long-term performance of the liner. Further, the illite-bentonite interaction occurs and changes their properties. The effect of these interactions is known when the pore fluid is only water. How their properties are modified in electrolyte solutions has been brought out in this paper. The index properties have been studied since they give an indication of their engineering properties. Due to reduction in the thickness of the diffused double layer and consequent particle aggregation in bentonite, the effect of clay-clay interaction reduces in electrolyte solutions. In electrolyte solutions, the liquid limit, the plasticity index, and free swell index of bentonite are lower than illite. The plasticity index of bentonite is further reduced in KCI solution. Clays with a higher plasticity index perform better to retain pollutants and reduce permeability. Hence, the presence of both illite and bentonite ensures better performance of the liner in different fluids.
Resumo:
A fundamental approach, based on Gouy-Chapman theory of double layer, has been provided to micromechanistically interpret the plasticity index of soils and their relationship with liquid limit. The relationships between plasticity index and liquid limit, developed earlier, through statistical approaches and critical state concepts, have been reexamined. The statistical analysis of extensive published data has resulted in the relationship, IP = 0.74 (wL - 8). On comparison with other relationships in vogue the proposed equation has been found to give better agreement. From the reappraisal of critical state approaches consistent with the micromechanistic interpretation, the possible range of parameters have been computed and compared with those obtained by statistical means to enhance the credibility of the proposed relationship.
Resumo:
With many innovations in process technology, forging is establishing itself as a precision manufacturing process: as forging is used to produce complex shapes in difficult materials, it requires dies of complex configuration of high strength and of wear-resistant materials. Extensive research and development work is being undertaken, internationally, to analyse the stresses in forging dies and the flow of material in forged components. Identification of the location, size and shape of dead-metal zones is required for component design. Further, knowledge of the strain distribution in the flowing metal indicates the degree to which the component is being work hardened. Such information is helpful in the selection of process parameters such as dimensional allowances and interface lubrication, as well as in the determination of post-forging operations such as heat treatment and machining. In the presently reported work the effect of aperture width and initial specimen height on the strain distribution in the plane-strain extrusion forging of machined lead billets is observed: the distortion of grids inscribed on the face of the specimen gives the strain distribution. The stress-equilibrium approach is used to optimise a model of flow in extrusion forging, which model is found to be effective in estimating the size of the dead-metal zone. The work carried out so far indicates that the methodology of using the stress-equilibrium approach to develop models of flow in closed-die forging can be a useful tool in component, process and die design.
Resumo:
Need to analyze particles in a flow? This system takes electrical pulses from acoustical or optical sensors and groups them into bands representing ranges of particle sizes.
Resumo:
Need to analyze particles in a flow? This system takes electrical pulses from acoustical or optical sensors and groups them into bands representing ranges of particle sizes.
Resumo:
A simple moire method for the direct measurement of refractive indices is presented. The change of magnification and/or distortion of the image of a linear grating when viewed through a refractive index field is amplified by means of moire fringes and is measured directly. Relations between the index of refraction and fringe spacing are derived and have been verified experimentally.
Resumo:
Microwave treated water soluble and amide functionalized single walled carbon nanotubes have been investigated using femtosecond degenerate pump-probe and nonlinear transmission experiments. The time resolved differential transmission using 75 femtosecond pulse with the central wavelength of 790 nm shows a bi-exponential ultrafast photo-bleaching with time constants of 160 fs (130 fs) and 920 fs (300 fs) for water soluble (amide functionalized) nanotubes. Open and closed aperture z-scans show saturation absorption and positive (negative) nonlinear refraction for water soluble (amide functionalized) nanotubes. Two photon absorption coefficient, beta(0) similar to 250 cm/GW (650 cm/GW) and nonlinear index, gamma similar to 15 cm(2)/pW (-30 cm(2)/pW) are obtained from the theoretical fit in the saturation limit to the data for two types of nanotubes.
Resumo:
Abstract is not available.
Resumo:
Conventional methods for determining the refractive index demand specimens of optical quality, the preparation of which is often very difficult. An indirect determination by matching the refractive indices of specimen and immersion liquid is a practical alternative for photoelastic specimen of nonoptical quality. An experimental arrangement used for this technique and observations made while matching the refractive indices of three different specimens are presented.
Resumo:
In this paper we discuss a new technique to image the surfaces of metallic substrates using field emission from a pointed array of carbon nanotubes (CNTs). We consider a pointed height distribution of the CNT array under a diode configuration with two side gates maintained at a negative potential to obtain a highly intense beam of electrons localized at the center of the array. The CNT array on a metallic substrate is considered as the cathode and the test substrate as the anode. Scanning the test Substrate with the cathode reveals that the field emission current is highly sensitive to the surface features with nanometer resolution. Surface features of semi-circular, triangular and rectangular geometries (projections and grooves) are considered for simulation. This surface scanning/mapping technique can be applied for surface roughness measurements with nanoscale accuracy. micro/nano damage detection, high precision displacement sensors, vibrometers and accelerometers. among other applications.
Resumo:
An acyclic edge coloring of a graph is a proper edge coloring such that there are no bichromatic cycles. The acyclic chromatic index of a graph is the minimum number k such that there is an acyclic edge coloring using k colors and is denoted by a'(G). It was conjectured by Alon, Suclakov and Zaks (and earlier by Fiamcik) that a'(G) <= Delta+2, where Delta = Delta(G) denotes the maximum degree of the graph. Alon et al. also raised the question whether the complete graphs of even order are the only regular graphs which require Delta+2 colors to be acyclically edge colored. In this article, using a simple counting argument we observe not only that this is not true, but in fact all d-regular graphs with 2n vertices and d>n, requires at least d+2 colors. We also show that a'(K-n,K-n) >= n+2, when n is odd using a more non-trivial argument. (Here K-n,K-n denotes the complete bipartite graph with n vertices on each side.) This lower bound for Kn,n can be shown to be tight for some families of complete bipartite graphs and for small values of n. We also infer that for every d, n such that d >= 5, n >= 2d+3 and dn even, there exist d-regular graphs which require at least d+2-colors to be acyclically edge colored. (C) 2009 Wiley Periodicals, Inc. J Graph Theory 63: 226-230, 2010.
Resumo:
In this article, a new flame extinction model based on the k/epsilon turbulence time scale concept is proposed to predict the flame liftoff heights over a wide range of coflow temperature and O-2 mass fraction of the coflow. The flame is assumed to be quenched, when the fluid time scale is less than the chemical time scale ( Da < 1). The chemical time scale is derived as a function of temperature, oxidizer mass fraction, fuel dilution, velocity of the jet and fuel type. The present extinction model has been tested for a variety of conditions: ( a) ambient coflow conditions ( 1 atm and 300 K) for propane, methane and hydrogen jet flames, ( b) highly preheated coflow, and ( c) high temperature and low oxidizer concentration coflow. Predicted flame liftoff heights of jet diffusion and partially premixed flames are in excellent agreement with the experimental data for all the simulated conditions and fuels. It is observed that flame stabilization occurs at a point near the stoichiometric mixture fraction surface, where the local flow velocity is equal to the local flame propagation speed. The present method is used to determine the chemical time scale for the conditions existing in the mild/ flameless combustion burners investigated by the authors earlier. This model has successfully predicted the initial premixing of the fuel with combustion products before the combustion reaction initiates. It has been inferred from these numerical simulations that fuel injection is followed by intense premixing with hot combustion products in the primary zone and combustion reaction follows further downstream. Reaction rate contours suggest that reaction takes place over a large volume and the magnitude of the combustion reaction is lower compared to the conventional combustion mode. The appearance of attached flames in the mild combustion burners at low thermal inputs is also predicted, which is due to lower average jet velocity and larger residence times in the near injection zone.
Resumo:
An optical technique is proposed for obtaining multiple excitation spots. Phase-matched counter propagating extended depth-of-focus fields were superimposed along the optical axis for generating multiple localized excitation spots. Moreover, the filtering effect due to the optical mask increases the lateral resolution. Proposed technique introduces the concept of simultaneous multiplane excitation and improves three-dimensional resolution. (C) 2010 American Institute of Physics.