237 resultados para Amplitude stabilization element
em Indian Institute of Science - Bangalore - Índia
Resumo:
It has been reported by Pati et al. (J. Am. Chem. Soc. 2005, 127, 3496) that coordination with a transition metal can stabilize the “antiaromatic”, all-metal compound Al4Li4. Here, we report that it can also be stabilized by capping with a main group element like C and its isoelectronic species BH. Our calculations of binding energy, nuclear independent chemical shift, energy decomposition analysis, and molecular orbital analysis support the capping-induced stability, reduction of bond length alternation, and increase of aromaticity of these BH/C-capped Al4Li4 systems. The interaction between px and py orbitals of BH/C and the HOMO and LUMO of Al4Li4 is responsible for the stabilization. Our calculations suggest that capping can introduce fluxionality at room temperature.
Resumo:
Thirteen host guest compounds of 3,5-dihydroxybenzoic acid (DHBA) have been structurally characterized. Water molecules occupy the peripheries of a hexagonal void, created with DHBA molecules, and act as ``hooks'' to connect the guest molecules with the host-framework via hydrogen bonding. The ``water hook'' is an OH group acting as a donor. Consequently, the guest molecules were chosen so that they contain good hydrogen bond acceptor functionalities. A number of multicomponent hydrates were isolated with stoichiometries (DHBA)(x)(H2O). (guest),. Of these, compounds with the following as guests were obtained as crystals that were good enough for single crystal work: ethyl acetate (EtOAc), diethyl oxalate, dimethyl oxalate, di(n-propyl) oxalate, diethyl malonate, diethyl succinate, chloroacetonitrile, N,N-dimethyl formamide (DMF), acetone, dimethyl sulfoxide (DMSO), 1-propanol, and 2-butanol. From 2-butanol, a hemihydrate, (DHBA)(2)(H2O), was also obtained concomitantly. Further to guest stabilization, water acts as a good mediator of effective crystal packing and also determines the topology of the host framework. En the present series of compounds, the role of water is wide ranging, and it is not easy to classify it specifically as a host or as a guest.
Resumo:
A geometrically non-linear Spectral Finite Flement Model (SFEM) including hysteresis, internal friction and viscous dissipation in the material is developed and is used to study non-linear dissipative wave propagation in elementary rod under high amplitude pulse loading. The solution to non-linear dispersive dissipative equation constitutes one of the most difficult problems in contemporary mathematical physics. Although intensive research towards analytical developments are on, a general purpose cumputational discretization technique for complex applications, such as finite element, but with all the features of travelling wave (TW) solutions is not available. The present effort is aimed towards development of such computational framework. Fast Fourier Transform (FFT) is used for transformation between temporal and frequency domain. SFEM for the associated linear system is used as initial state for vector iteration. General purpose procedure involving matrix computation and frequency domain convolution operators are used and implemented in a finite element code. Convergnence of the spectral residual force vector ensures the solution accuracy. Important conclusions are drawn from the numerical simulations. Future course of developments are highlighted.
Resumo:
A new stabilization scheme, based on a stochastic representation of the discretized field variables, is proposed with a view to reduce or even eliminate unphysical oscillations in the mesh-free numerical simulations of systems developing shocks or exhibiting localized bands of extreme deformation in the response. The origin of the stabilization scheme may be traced to nonlinear stochastic filtering and, consistent with a class of such filters, gain-based additive correction terms are applied to the simulated solution of the system, herein achieved through the element-free Galerkin method, in order to impose a set of constraints that help arresting the spurious oscillations. The method is numerically illustrated through its Applications to inviscid Burgers' equations, wherein shocks may develop as a result of intersections of the characteristics, and to a gradient plasticity model whose response is often characterized by a developing shear band as the external load is gradually increased. The potential of the method in stabilized yet accurate numerical simulations of such systems involving extreme gradient variations in the response is thus brought forth. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
A plane strain elastic interaction analysis of a strip footing resting on a reinforced soil bed has been made by using a combined analytical and finite element method (FEM). In this approach the stiffness matrix for the footing has been obtained using the FEM, For the reinforced soil bed (halfplane) the stiffness matrix has been obtained using an analytical solution. For the latter, the reinforced zone has been idealised as (i) an equivalent orthotropic infinite strip (composite approach) and (ii) a multilayered system (discrete approach). In the analysis, the interface between the strip footing and reinforced halfplane has been assumed as (i) frictionless and (ii) fully bonded. The contact pressure distribution and the settlement reduction have been given for different depths of footing and scheme of reinforcement in soil. The load-deformation behaviour of the reinforced soil obtained using the above modelling has been compared with some available analytical and model test results. The equivalent orthotropic approach proposed in this paper is easy to program and is shown to predict the reinforcing effects reasonably well.
Resumo:
Transcription of tRNA genes by RNA polymerase III is controlled by the internal conserved sequences within the coding region and the immediate upstream flanking sequences. A highly transcribed copy of glycyl tRNA gene tRNA1(Gly)-1 from Bombyx mori is down regulated by sequences located much farther upstream in the region -150 to -300 nucleotides (nt), with respect to the +1 nt of tRNA. The negative regulatory effect has been narrowed down to a sequence motif 'TATATAA', a perfect consensus recognised by the TATA binding protein, TBP. This sequence element, when brought closer to the transcription start point, on the other hand, exerts a positive effect by promoting transcription of the gene devoid of other cis regulatory elements. The identity of the nuclear protein interacting with this 'TATATAA' element to TBP has been established by antibody and mutagenesis studies. The 'TATATAA' element thus influences the transcription of tRNA genes positively or negatively in a position-dependent manner either by recruitment or sequestration of TBP from the transcription machinery.
Resumo:
A simple and practical technique for the discrete representation of reinforcement in two-dimensional boundary element analysis of reinforced concrete structural elements is presented. The bond developed over the surface of contact between the reinforcing steel and concrete is represented using fictitious one-dimensional spring elements. Potentials of the model developed are demonstrated using a number of numerical examples. The results are seen to be in good agreement with the results obtained using standard finite element software.
Resumo:
Lasers are very efficient in heating localized regions and hence they find a wide application in surface treatment processes. The surface of a material can be selectively modified to give superior wear and corrosion resistance. In laser surface-melting and welding problems, the high temperature gradient prevailing in the free surface induces a surface-tension gradient which is the dominant driving force for convection (known as thermo-capillary or Marangoni convection). It has been reported that the surface-tension driven convection plays a dominant role in determining the melt pool shape. In most of the earlier works on laser-melting and related problems, the finite difference method (FDM) has been used to solve the Navier Stokes equations [1]. Since the Reynolds number is quite high in these cases, upwinding has been used. Though upwinding gives physically realistic solutions even on a coarse grid, the results are inaccurate. McLay and Carey have solved the thermo-capillary flow in welding problems by an implicit finite element method [2]. They used the conventional Galerkin finite element method (FEM) which requires that the pressure be interpolated by one order lower than velocity (mixed interpolation). This restricts the choice of elements to certain higher order elements which need numerical integration for evaluation of element matrices. The implicit algorithm yields a system of nonlinear, unsymmetric equations which are not positive definite. Computations would be possible only with large mainframe computers.Sluzalec [3] has modeled the pulsed laser-melting problem by an explicit method (FEM). He has used the six-node triangular element with mixed interpolation. Since he has considered the buoyancy induced flow only, the velocity values are small. In the present work, an equal order explicit FEM is used to compute the thermo-capillary flow in the laser surface-melting problem. As this method permits equal order interpolation, there is no restriction in the choice of elements. Even linear elements such as the three-node triangular elements can be used. As the governing equations are solved in a sequential manner, the computer memory requirement is less. The finite element formulation is discussed in this paper along with typical numerical results.
Resumo:
The details of development of the stiffness matrix for a doubly curved quadrilateral element suited for static and dynamic analysis of laminated anisotropic thin shells of revolution are reported. Expressing the assumed displacement state over the middle surface of the shell as products of one-dimensional first order Hermite polynomials, it is possible to ensure that the displacement state for the assembled set of such elements, is geometrically admissible. Monotonic convergence of total potential energy is therefore possible as the modelling is successively refined. Systematic evaluation of performance of the element is conducted, considering various examples for which analytical or other solutions are available.
Resumo:
Existence of a periodic progressive wave solution to the nonlinear boundary value problem for Rayleigh surface waves of finite amplitude is demonstrated using an extension of the method of strained coordinates. The solution, obtained as a second-order perturbation of the linearized monochromatic Rayleigh wave solution, contains harmonics of all orders of the fundamental frequency. It is shown that the higher harmonic content of the wave increases with amplitude, but the slope of the waveform remains finite so long as the amplitude is less than a critical value.
Resumo:
Given a plant P, we consider the problem of designing a pair of controllers C1 and C2 such that their sum stabilizes P, and in addition, each of them also stabilizes P should the other one fail. This is referred to as the reliable stabilization problem. It is shown that every strongly stabilizable plant can be reliably stabilized; moreover, one of the two controllers can be specified arbitrarily, subject only to the constraint that it should be stable. The stabilization technique is extended to reliable regulation.
Resumo:
Current-potential relationships are derived for small-amplitude periodic inputs for linear electrochemical systems using a Fourier synthesis procedure. Specific results have been obtained for a triangular potential waveform for two simple model systems.
Resumo:
Hyperconjugation and inductive effects, rather than homoaromaticity, are responsible for the stabilization of the title anion in the gas phase; interaction of the double bond with the Li+ gegenion in the endo geometry contributes additionally in solution.
Resumo:
In this paper we study two problems in feedback stabilization. The first is the simultaneous stabilization problem, which can be stated as follows. Given plantsG_{0}, G_{1},..., G_{l}, does there exist a single compensatorCthat stabilizes all of them? The second is that of stabilization by a stable compensator, or more generally, a "least unstable" compensator. Given a plantG, we would like to know whether or not there exists a stable compensatorCthat stabilizesG; if not, what is the smallest number of right half-place poles (counted according to their McMillan degree) that any stabilizing compensator must have? We show that the two problems are equivalent in the following sense. The problem of simultaneously stabilizingl + 1plants can be reduced to the problem of simultaneously stabilizinglplants using a stable compensator, which in turn can be stated as the following purely algebraic problem. Given2lmatricesA_{1}, ..., A_{l}, B_{1}, ..., B_{l}, whereA_{i}, B_{i}are right-coprime for alli, does there exist a matrixMsuch thatA_{i} + MB_{i}, is unimodular for alli?Conversely, the problem of simultaneously stabilizinglplants using a stable compensator can be formulated as one of simultaneously stabilizingl + 1plants. The problem of determining whether or not there exists anMsuch thatA + BMis unimodular, given a right-coprime pair (A, B), turns out to be a special case of a question concerning a matrix division algorithm in a proper Euclidean domain. We give an answer to this question, and we believe this result might be of some independent interest. We show that, given twon times mplantsG_{0} and G_{1}we can generically stabilize them simultaneously provided eithernormis greater than one. In contrast, simultaneous stabilizability, of two single-input-single-output plants, g0and g1, is not generic.
Resumo:
A finite element analysis of laminated shells of revolution reinforced with laminated stifieners is described here-in. A doubly curved quadrilateral laminated anisotropic shell of revolution finite element of 48 d.o.f. is used in conjunction with two stiffener elements of 16 d.o.f. namely: (i) A laminated anisotropic parallel circle stiffener element (PCSE); (ii) A laminated anisotropic meridional stiffener element (MSE). These stifiener elements are formulated under line member assumptions as degenerate cases of the quadrilateral shell element to achieve compatibility all along the shell-stifiener junction lines. The solutions to the problem of a stiffened cantilever cylindrical shell are used to check the correctness of the present program while it's capability is shown through the prediction of the behavior of an eccentrically stiffened laminated hyperboloidal shell.