18 resultados para Acetylcholinesterase and Lysosomes
em Indian Institute of Science - Bangalore - Índia
Resumo:
1. 1. Colon lysosome were separated by differential centrifugation and lysosomes with three different densities, probably arising from the three layers of colon, were found. 2. 2. Hypervitaminosis A resulted in a significant increase in prothrombin time which was restored to normal on vitamin K1 (20) supplementation. 3. 3. There was no appreciable change in the liver storage of vitamin A between hypervitaminotic rats receiving vitamin A and those rats receiving vitamin K1 (20) in addition to excess vitamin A. 4. 4. The colon lysosomes were unstable in hypervitaminosis A, showing an increased free activity of lysosomal enzymes like β-glucuronidase, acid phosphatase and arylsulphatase. This increase of free activity of lysoso3al enzymes in hypervitaminosis A could be prevented by oral supplementation of vitamin K1 (20). 5. 5. In "mild" vitamin A deficiency the release of arylsulphatase was significantly retarded, whereas the decreased free acid phosphatase activity was not significant. 6. 6. "Severe" vitamin A deficiency resulted in a significantly increased free activity of arylsulphatase and acid phosphatase, thus showing the instability of the lysosomal particles in this condition. 7. 7. Addition of vitamin K1 (20) to the incubation medium in vitro could prevent the vitamin A-induced release of arylsulphatase from liver lysosomes, whereas α-tocopherol was inactive. 8. 8. Retinol and retinoic acid were nearly twice as active as ethanol in the release of arylsulphatase from lysosomes in vitro, whereas 5,6-monoepoxyretinoic acid was inactive. 9. 9. The role of vitamins A and K on the lysosomal membrane structure is discussed.
Resumo:
Boswellia papyrifera and Boswellia carterii released from smoke contaminate indoor environment and consequently adversely affect humans as evidenced by respiratory disturbances. The aim of this study was to determine the effects of these plants on pathological and biochemical changes in vas deferens of albino rats. Animals were administered 4g/kg body weight B. papyrifera and B. carterii daily for 120days along with controls. Significant changes were observed in epithelial cell types and some cells showed signs of degeneration. The ultrastructural studies revealed marked changes in cytoplasmic organelles. Microvilli were missing and lysosomes were found in the cytoplasm. In addition, all treated groups plasma fructose and other biochemical parameters were decreased indicating reduced energy necessary for motility and contractility of spermatozoa. Many spermatozoa were disorganized and agglomerated. Data suggest that smoke from these plants adversely affects vas deferens.
Resumo:
Salmonella has evolved several strategies to counteract intracellular microbicidal agents like reactive oxygen and nitrogen species. However, it is not yet clear how Salmonella escapes lysosomal degradation. Some studies have demonstrated that Salmonella can inhibit phagolysosomal fusion, whereas other reports have shown that the Salmonella-containing vacuole (SCV) fuses/interacts with lysosomes. Here, we have addressed this issue from a different perspective by investigating if the infected host cell has a sufficient quantity of lysosomes to target Salmonella. Our results suggest that SCVs divide along with Salmonella, resulting in a single bacterium per SCV. As a consequence, the SCV load per cell increases with the division of Salmonella inside the host cell. This demands more investment from the host cell to counteract Salmonella. Interestingly, we observed that Salmonella infection decreases the number of acidic lysosomes inside the host cell both in vitro and in vivo. These events potentially result in a condition in which an infected cell is left with insufficient acidic lysosomes to target the increasing number of SCVs, which favors the survival and proliferation of Salmonella inside the host cell.
Resumo:
The effect of malathion on jugular plasma concentrations of follicle-stimulating hormone (FSH), estradiol (E2), progesterone (P4) and acetylcholinesterase (AchE) on conception in dairy cattle during a cloprostenol (prostaglandin F2-alpha analogue, PG)-induced estrus was studied. Malathion (1 mg/kg, intraruminally) given at the onset of estrus (48 h after PG) did not alter the plasma FSH or E2 concentrations but significantly (P < 0.05) inhibited plasma P4 concentration. The mean P4 concentration in the malathion-treated group on days 8 and 12 were 0.8 +/- 0.4 and 1.0 +/- 0.5 ng/ml, as compared to 2.6 +/- 0.0 and 2.4 +/- 0.3 ng/ml in the control group. There was a nonsignificant (P > 0.05) inhibition of plasma AchE activity in malathion-treated cattle. Conception was 16.6% in malathion-treated cows and 50% in controls. Inhibition of progesterone secretion and poor conception occurred after the single intraruminal dose of malathion at the onset of estrus.
Resumo:
A new electrochemical sensing device was constructed for determination of pesticides. In this report, acetylcholinesterase was bioconjugated onto hybrid nanocomposite, i.e. iron oxide nanoparticles and poly(indole-5-carboxylic acid) (Fe(3)O(4)NPs/Pin5COOH) was deposited electrochemically on glassy carbon electrode. Fe(3)O(4)NPs was showed as an amplified sensing interface at lower voltage which makes the sensor more sensitive and specific. The enzyme inhibition by pesticides was detected within concentrations ranges between 0.1-60 and 1.5-70 nM for malathion and chlorpyrifos, respectively, under optimal experimental conditions (sodium phosphate buffer, pH 7.0 and 25 degrees C). Biosensor determined the pesticides level in water samples (spiked) with satisfactory accuracy (96%-100%). Sensor showed good storage stability and retained 50% of its initial activity within 70 days at 4 degrees C.
Resumo:
Two variants of a simplified procedure for the isolation of plasma membrane fractions from monkey and rat brains, are described. The preparations show marked enrichments in the marker enzymes, (Na+-K+) adenosine triphosphatase, acetylcholinesterase, 5′-nucleotidase and adenylate cyclase. Lipid analysis and a protein electrophoretic pattern are presented. An enzymatic check has been made to assess for contamination by other cellular organelles. The amino acid composition of brain membrane proteins show a resemblance to the reported composition of erythrocyte ghost proteins but differ from myelin proteins.
Resumo:
Acetylcholinesterase (AChE) from Pisum sativum purified 28 fold showed two closely moving protein bands on polyacrylamide gel electrophoresis, both of which have AChE activity. AChE activity occurs in roots, stem and leaves, that in roots varying with age. Activity is optimal at pH 9 and at 30”. The energy of activation is 9.82 x lo3 J per mol and MW is greater than 200000. Although the enzyme can hydrolyze both choline and non-choline esters, it has greater affinity for acetylthiocholine (ATCh) and acetylcholine (ACh). ATCh inhibits the enzyme at higher concentrations and the K, is 0.2 mM with this as substrate. The enzyme is not as sensitive to Eserine as it is to Neostigmine. It is also inhibited by organophosphorus pesticides such as Fensulfothion, Parathion and Dimethoate. Treatment of the seeds with Fensulfothion [O, O-diethyl (p-methylsulfinylphenyl) phosphorothioate] affects growth and secondary root development. This might be explained by its inhibition of AChE and the consequent increase of endogenous levels of ACh.
Resumo:
Pisum sativum seeds contain a conserved acetylcholinesterase (AChE) which is active during the early stages of germination. The enzyme activity soon disappears and reappears after 72 hr of germination. A protein devoid of catalytic ability, but exhibiting similar chromatographic and electrophoretic properties as the active AChE, could be detected after 24 hr of germination. The pattern of incorporation of labelled amino acids into AChE and the influence of cycloheximide revealed that the AChE found in the roots from 72 hr onwards was entirely new. During this period of growth, the AChE protein accounts for 4–10% of the total proteins in the root tissue.
Resumo:
Gonadotropic hormones PMSG (15 IU/rat), FSH (3 mgrg/rat), LH (9 mgrg/rat) and hCG (3 mgrg/rat) were shown to decrease the free cytosolic lysosomal enzymes during the acute phase of hormone action in rat ovaries. When isolated cells from such rats were analyzed for the cathepsin-D activity, the granulosa cells of the ovary showed a reduction in the free as well as in the total lysosomal enzyme activities in response to FSH/PMSG; the stromal and thecal compartment of the ovary showed a reduction only in the free activity in response to hCG/PMSG. The results suggest the presence of two distinct, target cell specific, mechanisms by which the lysosmal activity of the ovary is regulated by gonadotropins.
Resumo:
The phosphate-inhibitable neutral protease activity of the heavy mitochondrial fraction of rat liver is of lysosomal origin. The activity is essentially due to the thiol proteinases of the lysosomes. Digitonin treatment of the mitochondrial fraction results in the release of about 85 per cent of the neutral protease activity and the residual activity has an alkaline pH optimum and is not inhibited by phosphate. Clofibrate feeding at 0.5 per cent level in the diet results in enhanced levels of lysosomal enzymes. The increase is however restricted to the lysosome-rich fraction such that the activities associated with the heavy mitochondrial fraction show a significant decrease. It is suggested that clofibrate inhibits engulfment of mitochondria by lysosomes and this results in enhanced mitochondrial protein content.
Resumo:
Methyl isocyanate (MIC) interaction with the rabbit erythrocyte membrane increased the fluidity of the membrane and decreased the osmotic fragility of erythrocytes both in vitro and in vivo in rabbits intoxicated with MIC subcutaneously. MIC inhibited both acetylcholinesterase (AChE) and adenosine triphosphatase (ATPase) activities of erythrocytes dose-dependently in vitro, while in vivo a decreased trend in ATPase activity with unaltered AChE activity was observed. MIC also caused significant decrease in plasma sodium level with corresponding increase in potassium level in rabbits. The observed effects are due to MIC, per se, as the hydrolysis products of MIC, methylamine and N,Nprime-dimethylurea did not affect the erythrocyte fluidity and enzymes activities both in vitro and in vivo while they increased the osmotic fragility of erythrocytes in vivo in rabbits administered subcutaneously in equimolar concentration to MIC dosage. Inhibition of Na+-K+-dependent ATPase with altered permeability to cations and also probably water transport of plasma membrane due to MIC interaction are envisaged.