87 resultados para AGN, radio galaxies, CSO, CSS, GPS, HFP
em Indian Institute of Science - Bangalore - Índia
Resumo:
The numbers and mean radio luminosities of giant radio galaxies (GRGs) have been calculated for redshifts up to z = 0.6, assuming a sensitivity limit of 1 Jy at 1 GHz for the observations. The estimates are obtained with a model for the beam propagation, first through the hot gaseaous halo around the parent galaxy, and thereafter, through the even hotter but less dense intergalactic medium. The model is able to accurately reproduce the observed numbers and mean radio luminosities of GRGs at redshifts of less than 0.1, and it predicts that a somewhat larger number of GRGs should be found at redshifts of greater than 0.1.
Resumo:
We present multifrequency Very Large Array (VLA) observations of two giant quasars, 0437-244 and 1025-229, from the Molonglo Complete Sample. These sources have well-defined FR II radio structure, possible one-sided jets, no significant depolarization between 1365 and 4935 MHz and low rotation measure (\ RM \ < 20 rad m(-2)). The giant sources are defined to be those with overall projected size greater than or equal to 1 Mpc. We have compiled a sample of about 50 known giant radio sources from the literature, and have compared some of their properties with a complete sample of 3CR radio sources of smaller sizes to investigate the evolution of giant sources, and test their consistency with the unified scheme for radio galaxies and quasars. We find an inverse correlation between the degree of core prominence and total radio luminosity, and show that the giant radio sources have similar core strengths to smaller sources of similar total luminosity. Hence their large sizes are unlikely to be caused by stronger nuclear activity. The degree of collinearity of the giant sources is also similar to that of the sample of smaller sources. The luminosity-size diagram shows that the giant sources are less luminous than our sample of smaller sized 3CR sources, consistent with evolutionary scenarios in which the giants have evolved from the smaller sources, losing energy as they expand to these large dimensions. For the smaller sources, radiative losses resulting from synchrotron radiation are more significant while for the giant sources the equipartition magnetic fields are smaller and inverse Compton lass owing to microwave background radiation is the dominant process. The radio properties of the giant radio galaxies and quasars are consistent with the unified scheme.
Resumo:
We present observations of radio recombination lines (RRL) from the starburst galaxy Arp 220 at 8.1 GHz (H92 alpha) and 1.4 GHz (H167 alpha and H165 alpha) and at 84 GHz (H42 alpha), 96 GHz (H40 alpha) and 207 GHz (H31 alpha) using the Very Large Array and the IRAM 30 m telescope, respectively. RRLs were detected at all the frequencies except 1.4 GHz, where a sensitive upper limit was obtained. We also present continuum flux measurements at these frequencies as well as at 327 MHz made with the VLA. The continuum spectrum, which has a spectral index alpha similar to -0.6 (S-nu proportional to nu(alpha)) between 5 and 10 GHz, shows a break near 1.5 GHz, a prominent turnover below 500 MHz, and a flatter spectral index above 50 GHz. We show that a model with three components of ionized gas with different densities and area covering factors can consistently explain both RRL and continuum data. The total mass of ionized gas in the three components is 3.2 x 10(7) M., requiring 3 x 10(5) O5 stars with a total Lyman continuum production rate N-Lyc similar to 1.3 x 10(55) photons s(-1). The ratio of the expected to observed Br alpha and Br gamma fluxes implies a dust extinction A(V) similar to 45 mag. The derived Lyman continuum photon production rate implies a continuous star formation rate (SFR) averaged over the lifetime of OB stars of similar to 240 M yr(-1). The Lyman continuum photon Production rate of similar to 3% associated with the high-density H II regions implies a similar SFR at recent epochs (t < 10(5) yr). An alternative model of high-density gas, which cannot be excluded on the basis of the available data, predicts 10 times higher SFR at recent epochs. If confirmed, this model implies that star formation in Arp 220 consists of multiple starbursts of very high SFR (few times 10(3) M. yr(-1)) and short duration (similar to 10(5) yr). The similarity of IR excess, L-IR/L-Ly alpha similar to 24, in Arp 220 to values observed in starburst galaxies shows that most of the high luminosity of Arp 220 is due to the ongoing starburst rather than to a hidden active galactic nucleus (AGN). A comparison of the IR excesses in Arp 220, the Galaxy, and M33 indicates that the starburst in Arp 220 has an initial mass function that is similar to that in normal galaxies and has a duration longer than 107 yr. If there was no infall of gas during this period, then the star formation efficiency (SFE) in Arp 220 is similar to 50%. The high SFR and SFE in Arp 220 is consistent with their known dependences on mass and density of gas in star-forming regions of normal galaxies.
Resumo:
Recent X-ray observations have revealed that early-type galaxies (which usually produce extended double radio sources) generally have hot gaseous haloes extending up to approx102kpc1,2. Moreover, much of the cosmic X-ray background radiation is probably due to a hotter, but extremely tenuous, intergalactic medium (IGM)3. We have presented4–7 an analytical model for the propagation of relativistic beams from galactic nuclei, in which the beams' crossing of the pressure-matched interface between the IGM and the gaseous halo, plays an important role. The hotspots at the ends of the beams fade quickly when their advance becomes subsonic with respect to the IGM. This model has successfully predicted (for typical double radio sources) the observed8 current mean linear-size (approx2Dsime350 kpc)4,5, the observed8–11 decrease in linear-size with cosmological redshift4–6 and the slope of the linear-size versus radio luminosity10,12–14 relation6. We have also been able to predict the redshift-dependence of observed numbers and radio luminosities of giant radio galaxies7,15. Here, we extend this model to include the propagation of somewhat weaker beams. We show that the observed flattening of the local radio luminosity function (LRLF)16–20 for radio luminosity Papproximately 1024 W Hz-1 at 1 GHz can be explained without invoking ad hoc a corresponding break in the beam power function Phi(Lb), because the heads of the beams with Lb < 1025 W Hz-1 are decelerated to sonic velocity within the halo itself, which leads to a rapid decay of radio luminosity and a reduced contribution of these intrinsically weaker sources to the observed LRLF.
Resumo:
A radio study of a carefully selected sample of 20 Seyfert galaxies that are matched in orientation-independent parameters, which are measures of intrinsic active galactic nucleus power and host galaxy properties, is presented to test the predictions of the unified scheme hypothesis. Our sample sources have core flux densities greater than 8 mJy at 5 GHz on arcsec scales due to the feasibility requirements. These simultaneous parsec-scale and kiloparsec-scale radio observations reveal (1) that Seyfert 1 and Seyfert 2 galaxies have an equal tendency to show compact radio structures on milliarcsecond scales, (2) the distributions of parsec-scale and kiloparsec-scale radio luminosities are similar for both Seyfert 1 and Seyfert 2 galaxies, (3) there is no evidence for relativistic beaming in Seyfert galaxies, (4) similar distributions of source spectral indices in spite of the fact that Seyferts show nuclear radio flux density variations, and (5) the distributions of the projected linear size for Seyfert 1 and Seyfert 2 galaxies are not significantly different as would be expected in the unified scheme. The latter could be mainly due to a relatively large spread in the intrinsic sizes. We also find that a starburst alone cannot power these radio sources. Finally, an analysis of the kiloparsec-scale radio properties of the CfA Seyfert galaxy sample shows results consistent with the predictions of the unified scheme.
Resumo:
We present the results on the distribution and kinematics of HI gas with higher sensitivity and in one case of higher spectral resolution as well than reported earlier, of three irregular galaxies CGCG 097073, 097079 and 097087 (UGC 06697) in the cluster Abell 1367. These galaxies are known to exhibit long (50 - 75 kpc) tails of radio continuum and optical emission lines (H alpha) pointing away from the cluster centre and arcs of starformation on the opposite sides of the tails, These features as well as the HI properties, with two of the galaxies (CGCG 097073 and 097079) exhibiting sharper gradients in HI intensity on the side of the tails, are consistent with the HI gas being affected by the ram pressure of the intracluster medium. However the HI emission in all the three galaxies extends to much smaller distances than the radio-continuum and H alpha tails, and are possibly still bound to the parent galaxies. Approximately 20 - 30 per cent of the HI mass is seen to accumulate on the downstream side due to the effects of ram pressure.
Resumo:
We present the results of sub-mm, mm (850 mum, 450 mum and 1250 mum) and radio (1.4 and 4.8 GHz) continuum observations of a sample of 27 K-selected Extremely Red Objects, or EROs, (14 of which form a complete sample with K < 20 and I - K > 5) aimed at detecting dusty starbursts, deriving the fraction of UltraLuminous Infrared Galaxies (ULIGs) in ERO samples, and constraining their redshifts using the radio-FIR correlation. One ERO was tentatively detected at 1250 mum and two were detected at 1.4 GHz, one of which has a less secure identification as an ERO counterpart. Limits on their redshifts and their star forming properties are derived and discussed. We stacked the observations of the undetected objects at 850 mum, 1250 mum and 4.8 GHz in order to search for possible statistical emission from the ERO population as a whole, but no significant detections were derived either for the whole sample or as a function of the average NIR colours. These results strongly suggest that the dominant population of EROs with K < 20 is not comprised of ULIGs like HR 10, but is probably made of radio-quiet ellipticals and weaker starburst galaxies with L < 10(12) L . and SFR < few hundred M. yr(-1).
Resumo:
We have imaged the H92alpha and H75alpha radio recombination line (RRL) emissions from the starburst galaxy NGC 253 with a resolution of similar to4 pc. The peak of the RRL emission at both frequencies coincides with the unresolved radio nucleus. Both lines observed toward the nucleus are extremely wide, with FWHMs of similar to200 km s(-1). Modeling the RRL and radio continuum data for the radio nucleus shows that the lines arise in gas whose density is similar to10(4) cm(-3) and mass is a few thousand M., which requires an ionizing flux of (6-20) x 10(51) photons s(-1). We consider a supernova remnant (SNR) expanding in a dense medium, a star cluster, and also an active galactic nucleus (AGN) as potential ionizing sources. Based on dynamical arguments, we rule out an SNR as a viable ionizing source. A star cluster model is considered, and the dynamics of the ionized gas in a stellar-wind driven structure are investigated. Such a model is only consistent with the properties of the ionized gas for a cluster younger than similar to10(5) yr. The existence of such a young cluster at the nucleus seems improbable. The third model assumes the ionizing source to be an AGN at the nucleus. In this model, it is shown that the observed X-ray flux is too weak to account for the required ionizing photon flux. However, the ionization requirement can be explained if the accretion disk is assumed to have a big blue bump in its spectrum. Hence, we favor an AGN at the nucleus as the source responsible for ionizing the observed RRLs. A hybrid model consisting of an inner advection-dominated accretion flow disk and an outer thin disk is suggested, which could explain the radio, UV, and X-ray luminosities of the nucleus.
Resumo:
The spectral index-luminosity relationship for steep-spectrum cores in galaxies and quasars has been investigated, and it is found that the sample of galaxies supports earlier suggestions of a strong correlation, while there is weak evidence for a similar relationship for the quasars. It is shown that a strong spectral index-luminosity correlation can be used to set an upper limit to the velocities of the radio-emitting material which is expelled from the nucleus in the form of collimated beams or jets having relativistic bulk velocities. The data on cores in galaxies indicate that the Lorentz factors of the radiating material are less than about 2.
Resumo:
A scheme for integration of stand-alone INS and GPS sensors is presented, with data interchange over an external bus. This ensures modularity and sensor interchangeability. Use of a medium-coupled scheme reduces data flow and computation, facilitating use in surface vehicles. Results show that the hybrid navigation system is capable of delivering high positioning accuracy.
Resumo:
The light distribution in the disks of many galaxies is ‘lopsided’ with a spatial extent much larger along one half of a galaxy than the other, as seen in M101. Recent observations show that the stellar disk in a typical spiral galaxy is significantly lopsided, indicating asymmetry in the disk mass distribution. The mean amplitude of lopsidedness is 0.1, measured as the Fourier amplitude of the m=1 component normalized to the average value. Thus, lopsidedness is common, and hence it is important to understand its origin and dynamics. This is a new and exciting area in galactic structure and dynamics, in contrast to the topic of bars and two-armed spirals (m=2) which has been extensively studied in the literature. Lopsidedness is ubiquitous and occurs in a variety of settings and tracers. It is seen in both stars and gas, in the outer disk and the central region, in the field and the group galaxies. The lopsided amplitude is higher by a factor of two for galaxies in a group. The lopsidedness has a strong impact on the dynamics of the galaxy, its evolution, the star formation in it, and on the growth of the central black hole and on the nuclear fuelling. We present here an overview of the observations that measure the lopsided distribution, as well as the theoretical progress made so far to understand its origin and properties. The physical mechanisms studied for its origin include tidal encounters, gas accretion and a global gravitational instability. The related open, challenging problems in this emerging area are discussed.
Resumo:
Based on maps of the extragalactic radio sources Cyg A, Her A, Cen A, 3C 277.3 and others, arguments are given that the twin-jets from the respective active galactic nucleus ram their channels repeatedly through thin, massive shells. The jets are thereby temporarily choked and blow radio bubbles. Warm shell matter in the cocoon shows up radio-dark through electron-scattering.
Resumo:
The extragalactic diffuse emission at gamma-ray energies has interesting cosmological implications since these photons suffer little or no attenuation during their propagation from the site of origin. The emission could originate from either truly diffuse processes or from unresolved point sources such as AGNs, normal galaxies and starburst galaxies. Here, we examine the unresolved point source origin of the extragalactic gamma-ray background emission from normal galaxies and starburst galaxies. gamma-ray emission from normal galaxies is primarily coming from cosmic-ray interactions with interstellar matter and radiation (similar to 90%) along with a small contribution from discrete point sources (similar to 10%). Starburst galaxies are expected to have enhanced supernovae activity which leads to higher cosmic-ray densities, making starburst galaxies sufficiently luminous at gamma-ray energies to be detected by the current gamma-ray mission(Fermi Gamma-ray Space Telescope).
Resumo:
We analyse warps in the nearby edge-on spiral galaxies observed in the Spitzer/Infrared Array Camera (IRAC)4.5-mu m band. In our sample of 24 galaxies, we find evidence of warp in 14 galaxies. We estimate the observed onset radii for the warps in a subsample of 10 galaxies. The dark matter distribution in each of these galaxies are calculated using the mass distribution derived from the observed light distribution and the observed rotation curves. The theoretical predictions of the onset radii for the warps are then derived by applying a self-consistent linear response theory to the obtained mass models for six galaxies with rotation curves in the literature. By comparing the observed onset radii to the theoretical ones, we find that discs with constant thickness can not explain the observations; moderately flaring discs are needed. The required flaring is consistent with the observations. Our analysis shows that the onset of warp is not symmetric in our sample of galaxies. We define a new quantity called the onset-asymmetry index and study its dependence on galaxy properties. The onset asymmetries in warps tend to be larger in galaxies with smaller dis scalelengths. We also define and quantify the global asymmetry in the stellar light distribution, that we call the edge-on asymmetry in edge-on galaxies. It is shown that in most cases the onset asymmetry in warp is actually anticorrelated with the measured edge-on asymmetry in our sample of edge-on galaxies and this could plausibly indicate that the surrounding dark matter distribution is asymmetric.
Resumo:
The issue of dynamic spectrum scene analysis in any cognitive radio network becomes extremely complex when low probability of intercept, spread spectrum systems are present in environment. The detection and estimation become more complex if frequency hopping spread spectrum is adaptive in nature. In this paper, we propose two phase approach for detection and estimation of frequency hoping signals. Polyphase filter bank has been proposed as the architecture of choice for detection phase to efficiently detect the presence of frequency hopping signal. Based on the modeling of frequency hopping signal it can be shown that parametric methods of line spectral analysis are well suited for estimation of frequency hopping signals if the issues of order estimation and time localization are resolved. An algorithm using line spectra parameter estimation and wavelet based transient detection has been proposed which resolves above issues in computationally efficient manner suitable for implementation in cognitive radio. The simulations show promising results proving that adaptive frequency hopping signals can be detected and demodulated in a non cooperative context, even at a very low signal to noise ratio in real time.