491 resultados para 5-methoxy-bufotenine
em Indian Institute of Science - Bangalore - Índia
Resumo:
C18H17NO3, M r = 295"34, monoclinic, C2/c, a = 11.689 (2), b = 22.934 (4), c = 11.592 (2) A, fl=100.16(3) ° , V =3058.8(8) A 3, Z=8, D,n= 1.30 (5), Dx = 1.28 Mg m -3, A(Mo Ka) = 0.7107 A, tz(Mo Ka) = 0.094 mm- 1, F(000) = 1248, T = 300 K, final R = 0.046 for 1849 observed reflections [I > 30"(/)]. The indole nucleus is slightly bent along the C(8)---C(9) bond. The phenyl ring connected to the indole moiety is rotated about the C(3)---C(10) bond by 45.8 (3) °. The carboxyl group makes a dihedral angle of 8.1 (4) ° with the mean plane of the indole moiety. Centrosymmetrically related pairs of molecules are linked through hydrogen bonds across the centre of symmetry and form dimers.
Resumo:
Dinuclear ((VVV)-V-IV) oxophenoxovanadates of general formula [V2O3L] have been synthesized in excellent yields by reacting bis(acetylacetonato)oxovanadium(IV) with H3L in a 2:1 ratio in acetone under an N-2 atmosphere. Here L3- is the deprotonated form of 2,6-bis[{{(2-hydroxybenzyl)(N',N'-(dimethylamino)ethyl)}amino}methyl]-4-methylphenol (H3L1), 2,6-bis[{{(5-methyl-2-hydroxybenzyl)(N',N'-(dimethylamino)ethyl)}amino}methyl]-4-methylphenol (H3L2) 2,6-bis[ {{(5-tert-butyl-2-hydroxybenzyl)(N',N'-(dimethylamino)ethyl)}amino}methyl]-4-methylphenoI (H3L3), 2,6-bis[{{(5-chloro-2-hydroxybenzyl)(N',N'-(dimethylamino)ethyl)}amino}methyl]-4-methylphenol (H3L4) , 2,6-bis[{{(5-bromo-2-hydroxybenzyl)(N',N'-(dimethylamino)ethyl)}amino}methyl]-4-methylphenol (H3L5), or 2,6-bis[{{(5-methoxy-2-hydroxybenzyl)(N',N'-(dimethylamino)ethyl)}amino}methyl]-4-methylphenol (H3L6). In [V2O3L1], both the metal atoms have distorted octahedral geometry. The relative disposition of two terminal V=O groups in the complex is essentially cis. The O=V...V=O torsion angle is 24.6(2)degrees. The V-O-oxo-V and V-O-phenoxo-V angles are 117.5(4) and 93.4(3)degrees, respectively. The V...V bond distance is 3.173(5) Angstrom. X-ray crystallography, IR, UV-vis, and H-1 and V-51 NMR measurements show that the mixed-valence complexes contain two indistinguishable vanadium atoms (type 111). The thermal ellipsoids of O2, O4, C10, C14, and C15 also suggests a type III complex in the solid state. EPR spectra of solid complexes at 77 K display a single line indicating the localization of the odd electron (3d(xy)(1)). Valence localization at 77 K is also consistent with the V-51 hyperfine structure of the axial EPR spectra (3d(xy)(1) ground state) of the complexes in frozen (77 K) dichloromethane solution: S = 1/2, g(parallel to) similar to 1.94, g(perpendicular to) similar to 1.98, A(parallel to) similar to 166 x 10(-4) cm(-1), and A(perpendicular to) similar to 68 x 10(-4) cm(-1). In contrast isotropic room-temperature solution spectra of the family have 15 hyperfine lines (g(iso) similar to 1.974 and A(iso) similar to 50 x 10(-4) cm(-1)) revealing that the unpaired electron is delocalized between the metal centers. Crystal data for the [V2O3L1].CH2Cl2 complex are as follows: chemical formula, C32H43O6N4C12V2; crystal system, monoclinic; space group, C2/c; a = 18.461(4), b = 17.230(3), c = 13.700(3) Angstrom; beta = 117.88(3)degrees; Z = 8.
Resumo:
Schmidt reaction of 5-methoxy or 7-methoxyindan-1-ones or their derivatives results exclusively in isocarbostyrils which are converted into 6-methoxy or 8-methoxyisoquinolines in good yields. This strategy has been extended to the total synthesis of illudinine methyl ester (1b) starting from methyl 8-methoxy-2,2-dimethyl-7-oxo-1,2,3,5,6,7-hexahydro-s-indacene-4-carboxylate (4).
Resumo:
Four dinuclear bis(mu-Cl) bridged copper(II) complexes, Cu-2(mu-Cl)(2)(L-X)(2)](ClO4)(2) (L-X = N,N-bis(3,5-dimethylpyrazole-1-yl)-methyl]benzylamine with X = H(1), OMe(2), Me(3) and Cl(4)), have been synthesized and characterized by the single crystal X-ray diffraction method. In these complexes, each copper(II) center is penta-coordinated with square-pyramidal geometry. In addition to the tridentate L-X ligand, a chloride ion occupies the last position of the square plane. This chloride ion is also bonded to the neighboring Cu(II) site in its axial position forming an SP-I dinuclear Cu(II) unit that exhibits small intramolecular ferromagnetic interactions and supported by DFT calculations. The complexes 1-3 exhibit methylmonooxygenase (pMMO) behaviour and oxidise 4-tert-butylcatechol (4-TBCH2) with molecular oxygen in MeOH or MeCN to 4-tert-butyl-benzoquinone (4-TBQ), 5-methoxy-4-tert-butyl-benzoquinone (5-MeO-4-TBQ) as the major products along with 6,6'-Bu-t-biphenyl-3,4,3',4'-tetraol and others as minor products. These are further confirmed by ESI- and FAB-mass analyses. A tentative catalytic cycle has been framed based on the mass spectral analysis of the products and DFT calculations on individual intermediates that are energetically feasible.
Resumo:
The natural product fumagillin exhibits potent antiproliferative and antiangiogenic properties. The semisynthetic analog PPI-2458, (3R,4S,5S,6R)-5-methoxy-4-(2R,3R)-2-methyl-3-(3-methylbut-2-enyl) oxiran-2-yl]-1-oxaspiro2.5]octan-6-yl] N-(2R)-1-amino-3-methyl-1-oxobutan-2-yl]carbamate, demonstrates rapid inactivation of its molecular target, methionine aminopeptidase-2 (MetAP2), and good efficacy in several rodent models of cancer and inflammation with oral dosing despite low apparent oral bioavailability. To probe the basis of its in vivo efficacy, the metabolism of PPI-2458 was studied in detail. Reaction phenotyping identified CYP3A4/5 as the major source of metabolism in humans. Six metabolites were isolated from liver microsomes and characterized by mass spectrometry and nuclear resonance spectroscopy, and their structures were confirmed by chemical synthesis. The synthetic metabolites showed correlated inhibition of MetAP2 enzymatic activity and vascular endothelial cell growth. In an ex vivo experiment, MetAP2 inhibition in white blood cells, thymus, and lymph nodes in rats after single dosing with PPI-2458 and the isolated metabolites was found to correlate with the in vitro activity of the individual species. In a phase 1 clinical study, PPI-2458 was administered to patients with non-Hodgkin lymphoma. At 15 mg administered orally every other day, MetAP2 in whole blood was 80% inactivated for up to 48 hours, although the exposure of the parent compound was only similar to 10% that of the summed cytochrome P450 metabolites. Taken together, the data confirm the participation of active metabolites in the in vivo efficacy of PPI-2458. The structures define a metabolic pathway for PPI-2458 that is distinct from that of TNP-470 ((3R, 4S, 5S, 6R)-5-methoxy-4-(2R, 3R)-2-methyl-3-(3-methylbut-2-enyl)oxiran-2-yl]-1-oxaspiro2.5]octan-6 -yl] N-(2-chloroacetyl)carbamate). The high level of MetAP2 inhibition achieved in vivo supports the value of fumagillin-derived therapeutics for angiogenic diseases.
Resumo:
Abstract is not available.
Resumo:
dl-3-Methoxy-11-oxo-17β-carboxy-1,3,5(10),6,8-estrapentaene has been converted to dl-3-methoxy-17β-carboxy-1,3,5(10)-estratriene in fairly good yield.
Resumo:
3-Methyl-4-carboxy-2-(2′-methoxy-6′-naphthyl)cyclopenten-3-acetic acid, prepared from trans methyl 2-methyl-3-carbomethoxycyclopentanon-2-acetate and 2-methoxy-6-lithionaphthalene, on ring closure and catalytic hydrogenation gave dl-3-methoxy-17β-carboxy-1,3,5(10),6,8-estrapentaene.
Resumo:
The potassium salt of 3-methoxy and 3,5-dimethoxy benzoic acids undergoes deprotonation at the position para to the carboxylate group selectively when treated with LIC-KOR in THF at -78 degrees C and it has been extended to the synthesis of 3,5-dimethoxy-4-methyl benzoic acid. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
A new strategy for the total synthesis of methyl 8-methoxy-2,2-dimethyl-7-oxo-1,2,3,5,6,7-hexahydro-s-indacene-4-carboxylate 4, a key intermediate in the synthesis of illudalanes, is reported. The key step in this strategy is a new method of preparation of indanones from tetralones. Thus, the furfurylidene derivative of 6-methoxy-3,4-dihydronaphthalen-1-(2H)-one is oxidised to the dicarboxylic acid 9a which is cyclodehydrated to methyl 7-methoxy-1-oxoindan-4-carboxylate 10. Similar reactions on the tetrahydronaphthalenone 25, obtained from 6-methoxy-1,2,3,4-tetrahydronaphthalene-7-carbaldehyde 11 by sequential transformations including a regiospecific benzylic oxidation resulted in the hexahydro-s-indacenone 4, thus completing a formal synthesis of illudinine 1.
Resumo:
Synthesis of 5, 5-dimethyl- 7-methoxy-4 -oxatricyclo[4,3,1,0(3,7)]- decan-2-one 3a, a novel heterocyclic ring system present in morellin 1, and its 3-substituted derivatives 3b-e, is described from the Diels-Alder adducts 7, available from 1-methoxycyclohexa-1,4-dienes 4. Two routes, which involved the halocyclisation and the oxidative addition, were investigated for the conversion of the adducts 7 into 3. While the halocyclisation method resulted in mixtures, excellent yields of the target molecule were obtained by the second method. Solvolysis of the bromoether 9 resulted in a mixture of rearranged products 10, 13, 15 and 16.
Resumo:
Two new synthetic routes for the preparation of the title compound and its 3-substituted derivatives, a novel ring system present in morellin and other related natural products, are reported from the readily available dihydroanisoles.
Resumo:
DNA intercalating molecules are promising anticancer agents. Polycyclic aromatic molecules such as ellipticine intercalate into double-stranded DNA and affect major physiological functions. In the present study, we have characterized two molecules with the same chemical backbone but different side chains, namely 8-methoxy pyrimido[4',5':4,5]thieno (2,3-b)quinoline-4(3H)-one (MPTQ) and 4-morpholino pyrimido[4',5':4,5]thieno(2,3-b)quinoline (morpho-PTQ) at the 8th and 4th position, respectively. Although both MPTQ and morpho-PTQ show similar biophysical properties with high DNA affinity, here we show that they differ in their biological activities. We find that MPTQ is many fold more potent than morpho-PTQ and is cytotoxic against different leukemic cell lines. IC(50) value of methoxy PTQ was estimated between 2-15 A mu M among the leukemic cells studied, while it was more than 200 A mu M when morpho-PTQ was used. Cell cycle analysis shows an increase in sub-G1 phase, without any particular cell cycle arrest. Annexin V staining in conjunction with comet assay and DNA fragmentation suggest that MPTQ induces cytotoxicity by activating apoptosis. Thus the observed low IC(50) value of MPTQ makes it a promising cancer chemotherapeutic agent.