8 resultados para 10 Technology
em Indian Institute of Science - Bangalore - Índia
Resumo:
With respect to GaAs epitaxial lift-off technology, we report here the optimum atomic spacing (5-10 nm) needed to etch off the AlAs release layer that is sandwiched between two GaAs epitaxial layers. The AlAs etching rate in hydrofluoric acid based solutions was monitored as a function of release layer thickness. We found a sudden quenching in the etching rate, approximately 20 times that of the peak value, at lower dimensions (similar to2.5 nm) of the AlAs epitaxial layer. Since this cannot be explained on the basis of a previous theory (inverse square root of release layer thickness), we propose a diffusion-limited mechanism to explain this reaction process. With the diffusion constant being a mean-free-path-dependent parameter, a relation between the mean free path and the width of the channel is considered. This relation is in reasonable agreement with the experimental results and gives a good physical insight to the reaction kinetics.
Resumo:
This study aims at understanding the need for decentralized power generation systems and to explore the potential, feasibility and environmental implications of biomass gasifier-based electricity generation systems for village electrification. Electricity needs of villages are in the range of 5–20 kW depending on the size of the village. Decentralized power generation systems are desirable for low load village situations as the cost of power transmission lines is reduced and transmission and distribution losses are minimised. A biomass gasifier-based electricity generation system is one of the feasible options; the technology is readily available and has already been field tested. To meet the lighting and stationary power needs of 500,000 villages in India the land required is only 16 Mha compared to over 100 Mha of degraded land available for tree planting. In fact all the 95 Mt of woody biomass required for gasification could be obtained through biomass conservation programmes such as biogas and improved cook stoves. Thus dedication of land for energy plantations may not be required. A shift to a biomass gasifier-based power generation system leads to local benefits such as village self reliance, local employment and skill generation and promotion of in situ plant diversity plus global benefits like no net CO2 emission (as sustainable biomass harvests are possible) and a reduction in CO2 emissions (when used to substitute thermal power and diesel in irrigation pump sets).
Resumo:
Fusion of multi-sensor imaging data enables a synergetic interpretation of complementary information obtained by sensors of different spectral ranges. Multi-sensor data of diverse spectral, spatial and temporal resolutions require advanced numerical techniques for analysis and interpretation. This paper reviews ten advanced pixel based image fusion techniques – Component substitution (COS), Local mean and variance matching, Modified IHS (Intensity Hue Saturation), Fast Fourier Transformed-enhanced IHS, Laplacian Pyramid, Local regression, Smoothing filter (SF), Sparkle, SVHC and Synthetic Variable Ratio. The above techniques were tested on IKONOS data (Panchromatic band at 1 m spatial resolution and Multispectral 4 bands at 4 m spatial resolution). Evaluation of the fused results through various accuracy measures, revealed that SF and COS methods produce images closest to corresponding multi-sensor would observe at the highest resolution level (1 m).
Resumo:
Fiber Bragg grating (FBG) and Long Period Grating (LPG) chemical sensors are one of the most exciting developments in the field of optical fiber sensors. In this paper we have proposed a simple and effective chemical sensor based on FBG and LPG techniques for detecting the traces of cadmium (Cd) in drinking water at ppm level. The sensitiveness of these two has been compared. Also, these results have been compared with the results obtained by sophisticated spectroscopic atomic absorption and emission spectrometer instruments. For proper designing of FBG to act as a concentration sensor, the cladding region of the grating has been etched using HF solution. We have characterized the FBG concentration sensor sensitivities for different solutions of Cd concentrations varying from 0.01 ppm to 0.04 ppm and observed reflected spectrum in FBG and transmitted spectrum in LPG using Optical Spectrum Analyzer. Proper reagents have been used in the solutions for detection of the Cd species. The overall shift in wavelength is 10 nm in case of LPG and the shift of Bragg wavelength is 0.07 nm in case of FBG for 0.01-0.04 ppm concentrations. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The basic framework and - conceptual understanding of the metallurgy of Ti alloys is strong and this has enabled the use of titanium and its alloys in safety-critical structures such as those in aircraft and aircraft engines. Nevertheless, a focus on cost-effectiveness and the compression of product development time by effectively integrating design with manufacturing in these applications, as well as those emerging in bioengineering, has driven research in recent decades towards a greater predictive capability through the use of computational materials engineering tools. Therefore this paper focuses on the complexity and variety of fundamental phenomena in this material system with a focus on phase transformations and mechanical behaviour in order to delineate the challenges that lie ahead in achieving these goals. (C) 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
With the rapid scaling down of the semiconductor process technology, the process variation aware circuit design has become essential today. Several statistical models have been proposed to deal with the process variation. We propose an accurate BSIM model for handling variability in 45nm CMOS technology. The MOSFET is designed to meet the specification of low standby power technology of International Technology Roadmap for Semiconductors (ITRS).The process parameters variation of annealing temperature, oxide thickness, halo dose and title angle of halo implant are considered for the model development. One parameter variation at a time is considered for developing the model. The model validation is done by performance matching with device simulation results and reported error is less than 10%.© (2012) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Resumo:
Chronic recording of neural signals is indispensable in designing efficient brain machine interfaces and in elucidating human neurophysiology. The advent of multichannel microelectrode arrays has driven the need for electronics to record neural signals from many neurons. The dynamic range of the system is limited by background system noise which varies over time. We propose a neural amplifier in UMC 130 nm, 2P8M CMOS technology. It can be biased adaptively from 200 nA to 2 uA, modulating input referred noise from 9.92 uV to 3.9 uV. We also describe a low noise design technique which minimizes the noise contribution of the load circuitry. The amplifier can pass signal from 5 Hz to 7 kHz while rejecting input DC offsets at electrode-electrolyte interface. The bandwidth of the amplifier can be tuned by the pseudo-resistor for selectively recording low field potentials (LFP) or extra cellular action potentials (EAP). The amplifier achieves a mid-band voltage gain of 37 dB and minimizes the attenuation of the signal from neuron to the gate of the input transistor. It is used in fully differential configuration to reject noise of bias circuitry and to achieve high PSRR.
Resumo:
Current global energy scenario and the environmental deterioration aspect motivates substituting fossil fuel with a renewable energy resource - especially transport fuel. This paper reviews the current status of trending biomass to liquid (BTL) conversion processes and focuses on the technological developments in Fischer Tropsch (FT) process. FT catalysts in use, and recent understanding of FT kinetics are explored. Liquid fuels produced via FT process from biomass derived syngas promises an attractive, clean, carbon neutral and sustainable energy source for the transportation sector. Performance of the FT process with various catalysts, operating conditions and its influence on the FT products are also presented. Experience from large scale commercial installations of FT plants, primarily utilizing coal based gasifiers, are discussed. Though biomass gasification plants exist for power generation via gas engines with power output of about 2 MWe; there are only a few equivalent sized FT plants for biomass derived syngas. This paper discusses the recent developments in conversion of biomass to liquid (BTL) transportation fuels via FT reaction and worldwide attempts to commercialize this process. All the data presented and analysed here have been consolidated from research experiences at laboratory scale as well as from industrial systems. Economic aspects of BTL are reviewed and compared. (C) 2015 Elsevier Ltd. All rights reserved.