92 resultados para 1,3-BUTANEDIOL

em Indian Institute of Science - Bangalore - Índia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the title molecule, C13H15N3O2, the dihedral angle between the mean plane of the 1,3-dioxolane group and the 2-hydrazino-7-methylisoquinoline unit is 85.21 (5)degrees. The conformation of the molecule is influenced by bifurcated N-H center dot center dot center dot(O, O) and N-H center dot center dot center dot N intramolecular hydrogen bonds. In the crystal structure, molecules are linked via intermolecular N-H center dot center dot center dot O hydrogen bonds, forming extended chains along [001].

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the title moleclue, C19H21NO, the 4-piperidone ring adopts a chair conformation in which the two benzene rings and the methyl group attached to C atoms all have equatorial orientations. In the crystal structure, centrosymmetric dimers are formed through weak intermolecular C-H center dot center dot center dot O hydrogen bonds [the dihedral angle between the aromatic rings is 58.51 (5)degrees].

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A bacterial consortium consisting of strains belongings to the genus Klebsiella and Rhodococcus quantitatively converts 1-, 3- and 7-substituted xanthines to their respective 8-oxo compounds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new class of 1,3,4-oxadiazoles were prepared from acid hydrazides on treatment with different carboxylic acids in the presence of phosphorus oxychloride. Interconversion of oxadiazoles to thiadiazoles and triazoles was carried out with appropriate reagents. The antimicrobial and cytotoxic activities of compounds 7a-d to 12a-d were tested. Compounds 10d and 12d showed pronounced antimicrobial activity. Further, compound 10d exhibited maximum cytotoxicity. (C) 2008 Elsevier Masson SAS. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reaction of the title compound (1a) with anhydrous MeOH-HCl gave 2-endo-(2,6-dimethoxyphenyl)-2-exo-methyl-5-methylbicyclo[3.2.1]octane-6,8-dione (3a), 1,5,14-timethoxy-5,8-seco-6,7-dinorestra-1,3,5(10),9(11)-tetraen-17-one (4), 1,5-dimethoxy-5,8-seco-6,7-dinorestra-1,3,5(10),8,14-pentaen-17-one (5), and 3,4,5,6-tetrahydro-2,7-dimethoxy-3,6-dimethyl-3,2,6-(13-oxopropan[1]yI[3]ylidene)-2H-1-benzoxocin (6). Structures assigned to compounds (3a), (4), and (6) are based on spectral data. The exo-tricyclic acetal structure (6) was further confirmed by the analysis of the 1H n.m.r. spectra of the isomeric alcohols (11) and (12), obtained by sodium borohydride reduction of (6).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

1H and 13C NMR spectra are reported for several 1,3-pyridylphenyl ureas. Analysis of the spectra yielded the chemical shifts. The variations in the chemical shifts have been discussed in terms of the molecular conformations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mr = 248, monoclinic, P21/n, a = 12.028 (2), b=7.168(2), c= 15.187(5)A, fl=91.88(2) °, Z= 4, V= 1308.6,~3, Din= 1.26, Dx= 1.263 Mgm -3, 2 (Cu Ka) = 1.5418 .A, g = 0.86 mm -1, F(000) = 536, T= 293 K. Final R = 5.6% for 2120 observed reflexions. Owing to the push-pull effect, the C=C bond distance is as long as 1.464 (2)/k with the twist angle about the bond 62.6.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

(I): Mr= 168, triclinic, P1, Z=2, a= 5.596 (2), b = 6.938 (3), c = 10.852 (4) A, ~t= 75.64 (3), fl= 93.44 (3), ),= 95.47 (3) °, V= 406.0A 3, Din= 1.35 (by flotation using carbon tetrachloride and n-hexane), D x= 1.374 Mg m -3, g(Mo Kct, 2 = 0.7107 A) = 1.08 cm -l, _F(000) = 180, T= 293 K. (II): Mr= 250, triclinic, P1, Z= 2, a = 7.731(2), b=8.580(2), c=11.033(3)A, a= 97-66 (2), fl= 98.86 (2), y= 101.78 (2) °, V= 697.5 A 3, D m = 1.18 (by flotation using KI solution), Dx= 1.190Mgm -3, g(MoKa, 2=0.7107A)= 1.02 cm -1, F(000) = 272, T= 293 K. Both structures were solved by direct methods and refined to R = 4.4% for 901 reflexions for (I) and 5.7% for 2001 reflexions for (II). The C=C bond distances are 1.451 (3) A in (I) and 1.468 (3)A in (II), quite significantly longer than the C=C bond in ethylene [1.336 (2).~; Bartell, Roth, Hollowell, Kuchitsu & Young (1965). J. Chem. Phys. 42, 2683-2686]. The twist angle about the C=C bond in (II) is 72.9 (5) ° but molecule (I) is essentially planar, the twist angle being only 4.9 (5) ° .

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electronic absorption and emission spectra as well as He(I) photoelectron spectra of 2,2,4,4-tetramethyl-,3-cyclobutanedithione and 2,2,4,4-tetramethyl-1-3-thio-1,3-cyclobutanedione have been interpreted on the basis of molecular orbital calculations. The results show that the non-bonded orbital of the dithione is split owing to through-bond interaction, the magnitude of splitting being 0.4 eV. The π* orbital of the dithione appears to be split by about 0.2 eV. Electronic absorption spectra show evidence for the existence of four n—π* transitions, arising out of the splitting of the orbitals referred to above, just as in the case of 2,2,4,4-tetramethyl-1,3-cyclobutanedione. Electronic and photoelectron spectra of the thio-dione show evidence for weak interaction between the C=S and C&.zdbnd;O groups, probably via π* orbitals. Infrared spectra of both the dithione and the thio-dione are consistent with the planar cyclobutane ring; the ring-puckering frequency responsible for non-bonded interactions is around 67 cm−1 in both the dithione and the thio-dione, the value not being very different from that in the dione. The 1,3-transannular distance is also similar in the three molecules.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Infrared spectra of 1,3-dithiole-2-thione (DTT) and its four selenium analogues have been studied in the region 4000 to 20 cm�1. Assignment of all the fundamental frequencies was made by noting the band shifts on progressive selenation. Normal coordinate analysis procedures have been applied for both in-plane and out-of-plane vibrations to help the assignments. The Urey�Bradley force function supplemented with valence force constants for the out-of-plane vibrations was employed for coordinate calculations. A correlation of the infrared assignments of DTT with its different selenium analogues is accomplished. Further, the infrared assignments are compared with those of trithiocarbonate ion and its selenium analogues and other structurally related heterocyclic molecules.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Crystal structures of the title compounds, (I) and (II), have been determined by three-dimensional diffraction methods. Crystals of CsHIoN 4 (I) are monoclinic, space group P21/a with Z = 4, Mr= 162, a = 7.965 (1), b = 16.232 (2), c = 7.343 (1) A, fl = 113.54 (1) °, V = 890.7 A 3, D,n = 1.218, D x = 1.208 gcm -3, g(Cu Ka, 2 = 1.5418/~) = 6.47 em -1, F(000) = 344. The crystals of C9H12N4 (II) are orthorhombic, space group P21en, with Z = 4, Mr = 176, a = 7.983 (3), b = 8.075 (2), c = 14.652 (3) ./k, V = 944.43/~3, Dm= 1.219, D x = 1.237 g cm -3, #(Mo Ka, ). = 0.7107 ,/k) = 0.868 cm -1, F(000) = 376. Both structures were solved by direct methods and refined to R = 5.8% for (I) and 5.3 % for (II). The C-C double-bond distances are 1.407 (3) in (I) and 1.429 (6)/~ in (II), appreciably longer than normal. The steric and push-pull effects result in rotation about the C=C bond, the rotation angles being 20.2 (3) in (I) and 31.5 (6) o in (II).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The molecular conformation of the title compound, C20H17N3, is stabilized by an intramolecular C-H center dot center dot center dot N interaction. The crystal structure shows intermolecular C-H center dot center dot center dot pi interactions. The dihedral angle between the isoquinoline unit and the phenyl ring is 11.42 (1)degrees whereas the isoquinoline unit and the pendent dimethyl pryrazole unit form a dihedral angle of 50.1 (4)degrees. Furthermore, the angle between the mean plane of the phenyl ring and the dimethyl pyrazole unit is 47.3 (6)degrees.