21 resultados para β adrenergic agonist
em Indian Institute of Science - Bangalore - Índia
Resumo:
Administration of noradrenaline inhibited the induction of hepatic trytophan pyrrolase by Cortisol but not by tryptophan. The selective inhibition of pyrrolase was specific to noradrenaline, whereas adrenaline and rat growth hormone also inhibited tyrosine aminotransferase. None of those three hormones had any effect on the incorporation of [32P]-orthophosphate into RNA, stimulated by cortisol. Other biogenic amines, polypeptide hormones and steroid analogues were not inhibitory to the induction of tryptophan pyrrolase by cortisol. The α-adrenergic agonist, phenylephrine, potentiated the noradrenaline inhibition whereas Image -threo-3,4-dihydroxyphenylserine, its precursor, together with pargyline had no effect on the induction process of pyrrolase. These results support the view that noradrenaline exerts its inhibitory action at the cell membrane via the α-receptor, and is not mediated directly by an intracellular mechanism.
Resumo:
The nicotinic Acetylcholine Receptor (nAChR) is the major class of neurotransmitter receptors that is involved in many neurodegenerative conditions such as schizophrenia, Alzheimer's and Parkinson's diseases. The N-terminal region or Ligand Binding Domain (LBD) of nAChR is located at pre- and post-synaptic nervous system, which mediates synaptic transmission. nAChR acts as the drug target for agonist and competitive antagonist molecules that modulate signal transmission at the nerve terminals. Based on Acetylcholine Binding Protein (AChBP) from Lymnea stagnalis as the structural template, the homology modeling approach was carried out to build three dimensional model of the N-terminal region of human alpha(7)nAChR. This theoretical model is an assembly of five alpha(7) subunits with 5 fold axis symmetry, constituting a channel, with the binding picket present at the interface region of the subunits. alpha-netlrotoxin is a potent nAChR competitive antagonist that readily blocks the channel resulting in paralysis. The molecular interaction of alpha-Bungarotoxin, a long chain alpha-neurotoxin from (Bungarus multicinctus) and human alpha(7)nAChR seas studied. Agonists such as acetylcholine, nicotine, which are used in it diverse array of biological activities, such as enhancements of cognitive performances, were also docked with the theoretical model of human alpha(7)nAChR. These docked complexes were analyzed further for identifying the crucial residues involved i interaction. These results provide the details of interaction of agonists and competitive antagonists with three dimensional model of the N-terminal region of human alpha(7)nAChR and thereby point to the design of novel lead compounds.
Resumo:
Objective: To study the efficacy of long-term buserelin acetate infusion to desensitize pituitary and block testicular function in adult male monkeys (Macaca radiata). Animals: Proven fertile male monkeys exhibiting normal testicular function. Protocol: Each of the control (n = 5) and experimental monkeys (n = 10) received a fresh miniosmotic pump every 21 days, whereas pumps in controls delivered vehicle of experimentals released 50-mu-g buserelin acetate every 24 hours. On day 170 (renewed every 60 days) a silastic capsule containing crystalline testosterone (T) was implanted in the experimental monkeys. At the end of 3 years, treatment was stopped, and recovery of testicular function and fertility monitored. Results: (1) Treatment resulted in marked reduction of nocturnal but not basal serum T; (2) the pituitary remained desensitized to buserelin acetate throughout the 3-year period; (3) animals were largely azoospermic with occasional oligospermia exhibited by two monkeys; and (4) withdrawal of treatment restored testicular function, with 70% of animals regaining fertility. Conclusion: Long-term infertility (but restorable) can be induced in male monkeys by constant infusion of buserelin acetate and T.
Resumo:
The effect of chronic infusion of gonadotropic hormone agonist Buserelin or antagonist CDB 2085 A for 15 weeks via alzet minipumps in adult male bonnet monkeys was studied. Infusion of Buserelin resulted in a decrease in the difference between serum testosterone values at 22.00 hours and 10.00 hours, decrease in responsiveness to injected Buserelin as judged by change in serum testosterone values from pre-injection values and decrease in sperm counts. Infusion of antagonist resulted in a decrease in the difference between serum testosterone values at 22.00 hours and 10.00 hours.
Resumo:
In partially hepatectomized rats, the activity of phenylalanine hydroxylase decreased in the regenerating liver but not in the kidney. The concentration of corticosterone in the plasma of hepatectomized rats increased, and phenylalanine hydroxylase, despite being cortisol inducible, decreased in these as well as simultaneously adrenalectomized rats, showing lack of correlation between the changes of the steroid and the enzyme during the regeneration process. The decrease in the enzyme activity could be prevented by administering, during hepatic regeneration, only noradrenaline and adrenergic blocking agents, among the many hormones and phenyl compounds tested. A decrease in hepatic phenylalanine hydroxylase was also observed during two other conditions of hepatocyte cell proliferation obtained after giving chlorophenoxyisobutyrate and α-hexachlorocyclohexane.
Resumo:
Induction of hepatic tryptophan-2,3-dioxygenase in rats by cortisol or corticosterone was inhibited on treatment with norepinephrine. The I-adrenergic blockers showed a small potentiating effect of the norepinephrine-mediated inhibition. The I-adrenergic blockers significantly reversed this inhibition, suggesting that norepinephrine acts Image the I-receptor in inhibition of the cortisol-mediated induction of this enzyme.
Resumo:
1.Administration of noradrenaline increased the incorporation of [1-14C]acetate into hepatic sterols and the activity of liver microsomal 3-hydroxy-3-methylglutaryl-CoA reductase. 2. The stimulation was observed at short time-intervals with a maximum at 4h and was progressive with increasing concentrations of noradrenaline. 3. Protein synthesis de novo was a necessary factor for the effect. 4. The stimulatory effect was not mediated through the adrenergic receptors, but appears to involve a direct action of the hormone within the hepatocyte.
Resumo:
Mitochondria isolated from the livers of rats administered with sodium meta-, ortho-, or polyvanadate, but not vanadyl sulphate, exhibited enhanced Ca2+ — stimulated respiration and uptake of calcium. These effects were shown also by mitochondria isolated from livers perfused with polyvanadate. The concentration of acid-soluble calcium decreased significantly in the mitochondrial fraction on vanadate treatment, while that in the cytosol showed a corresponding increase. Phenoxybenzamine, an antagonist to a-adrenergic receptors, effectively inhibited vanadate-induced Ca2+ mobilization, but surgical sympathectomy was without effect. This is the first demonstration of vanadate mimicking agr-adrenergic agonists in vivo.
Resumo:
Liver mitochondria isolated from vanadate-administered rats showed increased (20-25%) rates of oxidation of both NAD(+)-linked substrates and succinate. Respiratory control index and ADP/O were unaffected by the treatment. Dormant and uncoupler-stimulated ATPase activity also was not affected by vanadate administration. Membrane-bound, electron-transport-linked dehydrogenase activities (both NAD(+)- and succinate-dependent) increased by 15-20% on vanadate treatment. Mitochondrial alpha-glycerophosphate dehydrogenase activity increased by 50% on vanadate administration. The above effects of vanadate on oxidoreductase activities could be prevented by the prior administration of antagonists to alpha-adrenergic receptors. Substrate-dependent H2O2 generation by mitochondria also showed an increase on vanadate administration.
Resumo:
The phenomenon of neurotransmitter-stimulated incorporation of32Pi into phosphatidic acid and inositol phosphatides (neurotransmitter effect) in developing brain was studied in vitro as a possible measure of synaptogenesis. While the neurotransmitter effect was not observed with brain homogenates, highly consistent and significant effects were noted with brain tissue suspensions obtained by passing the tissue through nylon bolting cloth. The magnitude of the effect decreased with the increase in mesh number. Maximum stimulations obtained with the 33 mesh adult brain cortex preparations (mean±S.E.M. of6experiments) were203 ± 8%, 316 ± 11 % and150 ± 8% with 10−3 M acetylcholine (ACh) + 10−3 M eserine; 10−2 M norepinephrine (NE) and 10−2 M serotonin (5-HT), respectively. Experiments with developing rat brain at 7, 14 and 21 days of age showed that the neurotransmitter effects due to ACh, NE and 5-HT increase progressively in different regions of the brain but that there are marked regional differences. It is suggested that the neurotransmitter effect is a valid biochemical correlate of synaptogenesis. In rats undernourished from birth t0 21 days of age, by increasing the litter size, the neurotransmitter effect with ACh, NE or 5-HT was not altered in the cortex but was significantly reduced in the brain stem. In cerebellum the effects due to ACh and NE were significantly altered, while that with 5-HT was unaffected. It is concluded that cholinergic, adrenergic and serotonergic synapses are relatively unaffected in the cortex but are significantly affected in the brain stem by undernutrition. In the cerebellum of undernourished rats the adrenergic and cholinergic, but not serotonergic systems, are altered.
Resumo:
Synthetic CpG containing oligodeoxynucleotide Toll like receptor-9 agonist (CpG DNA) activates innate immunity and can stimulate antigen presentation against numerous intracellular pathogens. It was observed that Salmonella Typhimurium growth can be inhibited by the CpG DNA treatment in the murine dendritic cells. This inhibitory effect was mediated by an increased reactive oxygen species production. In addition, it was noted that CpG DNA treatment of dendritic cells during Salmonella infection leads to an increased antigen presentation. Further this increased antigen presentation was dependent on the enhanced reactive oxygen species production elicited by Toll like receptor-9 activation. With the help of an exogenous antigen it was shown that Salmonella antigen could also be cross-presented in a better way by CpG induction. These data collectively indicate that CpG DNA enhance the ability of murine dendritic cells to contain the growth of virulent Salmonella through reactive oxygen species dependent killing.
Resumo:
Eighteen corpora striata from normal human foetal brains ranging in gestational age from 16 to 40 weeks and five from post natal brains ranging from 23 days to 42 years were analysed for the ontogeny of dopamine receptors using [3H]spiperone as the ligand and 10 mM dopamine hydrochloride was used in blanks. Spiperone binding sites were characterized in a 40-week-old foetal brain to be dopamine receptors by the following criteria: (1) It was localized in a crude mitochondrial pellet that included synaptosomes; (2) binding was saturable at 0.8 nM concentration; (3) dopaminergic antagonists spiperone, haloperidol, pimozide, trifluperazine and chlorpromazine competed for the binding with IC50 values in the range of 0.3–14 nM while agonists—apomorphine and dopamine gave IC50 values of 2.5 and 10 μM, respectively suggesting a D2 type receptor.Epinephrine and norepinephrine inhibited the binding much less efficiently while mianserin at 10 μM and serotonin at 1 mM concentration did not inhibit the binding. Bimolecular association and dissociation rate constants for the reversible binding were 5.7 × 108 M−1 min−1 and 5.0 × 10−2 min−1, respectively. Equilibrium dissociation constant was 87 pM and the KD obtained by saturation binding was 73 pM.During the foetal age 16 to 40 weeks, the receptor concentration remained in the range of 38–60 fmol/mg protein or 570–1080 fmol/g striatum but it increased two-fold postnatally reaching a maximum at 5 years Significantly, at lower foetal ages (16–24 weeks) the [3H]spiperone binding sites exhibited a heterogeneity with a high (KD, 13–85 pM) and a low (KD, 1.2–4.6 nM) affinity component, the former accounting for 13–24% of the total binding sites. This heterogeneity persisted even when sulpiride was used as a displacer. The number of high affinity sites increased from 16 weeks to 24 weeks and after 28 weeks of gestation, all the binding sites showed only a single high affinity.GTP decreased the agonist affinity as observed by dopamine competition of [3H]spiperone binding in 20-week-old foetal striata and at all subsequent ages. GTP increased IC50 values of dopamine 2 to 4.5 fold and Hill coefficients were also increased becoming closer to one suggesting that the dopamine receptor was susceptible to regulation from foetal life onwards.
Resumo:
Integral membrane proteins have one or more transmembrane a-helical domains and carry out a variety of functions such as enzyme catalysis, transport across membranes, transducing signals as receptors of hormones and growth factors, and energy transfer in ATP synthesis. These transmembrane domains are not mere structural units anchoring the protein to the lipid bilayer but seem to-contribute in the overall activity. Recent findings in support of this are described using some typical examples-LDL receptor, growth factor receptor tyrosine kinase, HMG-CoA reductase, F-0-ATPase and adrenergic receptors. The trends in research indicate that these transmembrane domains participate in a variety of ways such as a linker, a transducer or an exchanger in the overall functions of these proteins in transfer of materials, energy and signals.
Resumo:
Introduction: Extensive studies have gone into understanding the differential role of the innate and adaptive arms of the immune system in the context of various diseases. Receptor-ligand interactions are responsible for mediating cross-talk between the innate and adaptive arms of the immune system, so as to effectively counter the pathogenic challenge. While TLRs remain the best studied innate immune receptor, many other receptor families are now coming to the fore for their role in various pathologies. Research has focused on the discovery of novel agonists and antagonists for these receptors as potential therapeutics. Areas covered: In this review, we present an overview of the recent advances in the discovery of drugs targeting important receptors such as G-protein coupled receptors, TRAIL-R, IL-1 beta receptor, PPARs, etc. All these receptors play a critical role in the modulation of the immune response. We focus on the recent paradigms applied for the generation of specific and effective therapeutics for these receptors and their status in clinical trials. Expert opinion: Non-specific activation by antagonist/agonist is a difficult problem to dodge. This demands innovation in ligand designing with the use of strategies such as allosterism and dual-specific ligands. Rigorous preclinical and clinical studies are required in transforming a compound to a therapeutic.
Resumo:
We report two antibodies, scFv 13B1 and MAb PD1.37, against the hinge regions of LHR and TSHR, respectively, which have similar epitopes but different effects on receptor function. While neither of them affected hormone binding, with marginal effects on hormone response, scFv 13B1 stimulated LHR in a dose-dependent manner, whereas MAb PD1.37 acted as an inverse agonist of TSHR. Moreover, PD1.37 could decrease the basal activity of hinge region CAMs, but had varied effects on those present in ECLs, whereas 13B1 was refractory to any CAMs in LHR. Using truncation mutants and peptide phage display, we compared the differential roles of the hinge region cysteine box-2/3 as well as the exoloops in the activation of these two homologus receptors. (C) 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.