24 resultados para (geodetic) thickness or volume changes
em Indian Institute of Science - Bangalore - Índia
Resumo:
Soils in and and semi-arid zones undergoes volume changes due to wetting. Depending upon the type of clay minerals present, degree of saturation, externally applied load and bonding, the fine grained soils either swells or compresses. One of the parameter that affects the volume change behaviour is the primary clay mineral present in their clay size fraction. A simple method of identifying the same has been presented. It has been brought out that in an expansive unsaturated undisturbed soil, the diffuse double layer repulsion, the stress state and the bonding play significant role in their volume change behaviour. In non-expansive fine grained unsaturated undisturbed soils, the shearing resistance at particle level (including the matrix suction and bonding) and fabric play a significant role in influencing the volume change behaviour. While both the mechanism co-exist, one of them play a dominant role depending upon the primary clay mineral is swelling or non swelling.
Resumo:
A simple volume dilatometer is described for the precise measurements of volume changes as a function of temperature in liquid mixtures. The expansivity of (cyclohexane + acetic anhydride) in the critical region was measured. The critical solution temperature Tc was approached to within 9 mK. For T > (Tc + 0.3 K), the results results follow both a logarithmic and a power-law behaviour with an exponent ≈ 1/8. But for T < (Tc + 0.3 K), the results seem to be affected possibly by gravity or temperature gradients. In this region, the expected expansivity anomaly is rounded off to a cusp. The expansivity shows a reduced anomaly for off-critical compositions. A discussion of the local extremum and a correlation between negative expansivity and the resistivity anomaly are also given.
Resumo:
We propose a new method for evaluating the adsorbed phase volume during physisorption of several gases on activated carbon specimens. We treat the adsorbed phase as another equilibrium phase which satisfies the Gibbs equation and hence assume that the law of rectilinear diameters is applicable. Since invariably the bulk gas phase densities are known along measured isotherms, the constants of the adsorbed phase volume can be regressed from the experimental data. We take the Dubinin-Astakhov isotherm as the model for verifying our hypothesis since it is one of the few equations that accounts for adsorbed phase volume changes. In addition, the pseudo-saturation pressure in the supercritical region is calculated by letting the index of the temperature term in Dubinin's equation to be temperature dependent. Based on over 50 combinations of activated carbons and adsorbates (nitrogen, oxygen, argon, carbon dioxide, hydrocarbons and halocarbon refrigerants) it is observed that the proposed changes fit experimental data quite well.
Resumo:
Mechanisms that control the volume changes behavior of foundation soils are well understood. The changes that occur in the behavior of soil due to migration of pollutants are not well understood. The extent of changes that occur in the presence of small concentration of contaminants can be predicted based on changes in the thickness of double layer and associated fabric changes. Interactions that occur with strong contaminants depends on the type of soil, type and concentration of contamination and duration of interaction etc It has been shown that different concentrations (1N and 4N) of sodium hydroxide solution causes abnormal changes on volume change behaviour of soil due to mineralogical changes. An attempt is made in this paper to stabilize contaminated soil using fly ash, after establishing its stability in alkali solutions. It was found that the effectiveness of fly ash to control the alkali induced heave increases with fly ash content incorporated into the soil. X-ray diffraction studies reveal that the mineralogical changes that occur in soil due to alkali interaction are inhibited by the presence of fly ash.
Resumo:
We investigate the evolution of the electronic structure across the insulator-metal transition in NiS2-xSex with changing composition, but in the absence of any structural or magnetic changes. A comparison of the inverse photoemission spectra with band-structure calculations establishes the importance of correlation effects in these systems. Systematic changes in the spectral distribution establish the persistence of the upper Hubbard band well into the metallic regime, with the insulator-to-metal transition being driven by a transfer of spectral weight from the Hubbard band to states close to the Fermi energy.
Resumo:
Alamethicin and several related microbial polypeptides, which contain a high proportion of agr-aminoisobutyric acid (Aib) residues, possess the ability to modify the permeability properties of phospholipid bilayer membranes. Alamethicin induces excitability phenomena in model membranes and has served as an excellent model for the study of voltage sensitive transmembrane channels. This review summarizes various aspects of the structural chemistry and membrane modifying properties of alamethicin and related Alb containing peptides. The presence of Aib residues in these sequences, constrains the polypeptides to 310 or agr-helical conformations. Functional membrane channels are formed by aggregation of cylindrical peptide helices, which span the lipid bilayer, forming a scaffolding for an aqueous column across the membrane. After consideration of the available data on the conductance characteristics of alamethicin channels, a working, hypothesis for a channel model is outlined. Channel aggregates in the lipid phase may be stabilized by intermolecular hydrogen bonding, involving a central glutamine residue and also by interactions between the macro-dipoles of proximate peptide helices. Fluctuations between different conductance states are rationalized by transitions between states of different aggregation and hence altered dimensions of the aqueous core or by changes in net dipole moment of the aggregate. Ion fluxes through the channel may also be affected by the electric field within the aqueous core.
Resumo:
Collections of non-Brownian particles suspended in a viscous fluid and subjected to oscillatory shear at very low Reynolds number have recently been shown to exhibit a remarkable dynamical phase transition separating reversible from irreversible behavior as the strain amplitude or volume fraction are increased. We present a simple model for this phenomenon, based on which we argue that this transition lies in the universality class of the conserved directed percolation models. This leads to predictions for the scaling behavior of a large number of experimental observables. Non-Brownian suspensions under oscillatory shear may thus constitute the first experimental realization of an inactive-active phase transition which is not in the universality class of conventional directed percolation.
Resumo:
Organic-inorganic composite membranes comprising Nation with inorganic materials such as silica, mesoporous zirconium phosphate (MZP) and mesoporous titanium phosphate (MTP) are fabricated and evaluated as proton-exchange-membrane electrolytes for direct methanol fuel cells (DMFCs). For Nation-silica composite membrane, silica is impregnated into Nation matrix as a sol by a novel water hydrolysis process precluding the external use of an acid. Instead, the acidic nature of Nation facilitates in situ polymerization reaction with Nation leading to a uniform composite membrane. The rapid hydrolysis and polymerization reaction while preparing zirconia and titania sols leads to uncontrolled thickness and volume reduction in the composite membranes, and hence is not conducive for casting membranes. Nafion-MZP and Nafion-MTP composite membranes are prepared by mixing pre-formed porous MZP and MTP with Nation matrix. MZP and MTP are synthesised by co-assembly of a tri-block co-polymer, namely pluronic-F127, as a structure-directing agent, and a mixture of zirconium butoxide/titanium isopropoxide and phosphorous trichloride as inorganic precursors. Methanol release kinetics is studied by volume-localized NMR spectroscopy (employing ``point resolved spectroscopy'', PRESS), the results clearly demonstrating that the incorporation of inorganic fillers in Nation retards the methanol release kinetics under osmotic drag. Appreciable proton conductivity with reduced methanol permeability across the composite membranes leads to improved performance of DMFCs in relation to commercially available Nafion-117 membrane.
Resumo:
The removal of noise and outliers from health signals is an important problem in jet engine health monitoring. Typically, health signals are time series of damage indicators, which can be sensor measurements or features derived from such measurements. Sharp or sudden changes in health signals can represent abrupt faults and long term deterioration in the system is typical of gradual faults. Simple linear filters tend to smooth out the sharp trend shifts in jet engine signals and are also not good for outlier removal. We propose new optimally designed nonlinear weighted recursive median filters for noise removal from typical health signals of jet engines. Signals for abrupt and gradual faults and with transient data are considered. Numerical results are obtained for a jet engine and show that preprocessing of health signals using the proposed filter significantly removes Gaussian noise and outliers and could therefore greatly improve the accuracy of diagnostic systems. [DOI: 10.1115/1.3200907].
Resumo:
In this work, the mechanics of tubular hydroforming under various types of loading conditions is investigated. The main objective is to contrast the effects of prescribing fluid pressure or volume flow rate, in conjunction with axial displacement, on the stress and strain histories experienced by the tube and the process of bulging. To this end, axisymmetric finite element simulations of free hydroforming (without external die contact) of aluminium alloy tubes are carried out. Hill’s normally anisotropic yield theory along with material properties determined in a previous experimental study [A. Kulkarni, P. Biswas, R. Narasimhan, A. Luo, T. Stoughton, R. Mishra, A.K. Sachdev, An experimental and numerical study of necking initiation in aluminium alloy tubes during hydroforming, Int. J. Mech. Sci. 46 (2004) 1727–1746] are employed in the computations. It is found that while prescribed fluid pressure leads to highly non-proportional strain paths, specified fluid volume flow rate may result in almost proportional ones for the predominant portion of loading. The peak pressure increases with axial compression for the former, while the reverse trend applies under the latter. The implication of these results on failure by localized necking of the tube wall is addressed in a subsequent investigation.
Resumo:
In the present study, an attempt was made to study the acute and sub-acute toxicity profile of G3-COOH Poly (propyl ether imine) PETIM] dendrimer and its use as a carrier for sustained delivery of model drug ketoprofen. Drug-dendrimer complex was prepared and characterized by FTIR, solubility and in vitro drug release study. PETIM dendrimer was found to have significantly less toxicity in A541 cells compared to Poly amido amine (PAMAM) dendrimer. Further, acute and 28 days sub-acute toxicity measurement in mice showed no mortality, hematological, biochemical or histopathological changes up to 80 mg/kg dose of PETIM dendrimer. The results of study demonstrated that G3-COOH PETIM dendrimer can be used as a safe and efficient vehicle for sustained drug delivery. (C) 2010 Elsevier Masson SAS. All rights reserved.
Resumo:
Combinatorial exchanges are double sided marketplaces with multiple sellers and multiple buyers trading with the help of combinatorial bids. The allocation and other associated problems in such exchanges are known to be among the hardest to solve among all economic mechanisms. It has been shown that the problems of surplus maximization or volume maximization in combinatorial exchanges are inapproximable even with free disposal. In this paper, the surplus maximization problem is formulated as an integer linear programming problem and we propose a Lagrangian relaxation based heuristic to find a near optimal solution. We develop computationally efficient tâtonnement mechanisms for clearing combinatorial exchanges where the Lagrangian multipliers can be interpreted as the prices of the items set by the exchange in each iteration. Our mechanisms satisfy Individual-rationality and Budget-nonnegativity properties. The computational experiments performed on representative data sets show that the proposed heuristic produces a feasible solution with negligible optimality gap.
Resumo:
In this paper, we present a differential-geometric approach to analyze the singularities of task space point trajectories of two and three-degree-of-freedom serial and parallel manipulators. At non-singular configurations, the first-order, local properties are characterized by metric coefficients, and, geometrically, by the shape and size of a velocity ellipse or an ellipsoid. At singular configurations, the determinant of the matrix of metric coefficients is zero and the velocity ellipsoid degenerates to an ellipse, a line or a point, and the area or the volume of the velocity ellipse or ellipsoid becomes zero. The degeneracies of the velocity ellipsoid or ellipse gives a simple geometric picture of the possible task space velocities at a singular configuration. To study the second-order properties at a singularity, we use the derivatives of the metric coefficients and the rate of change of area or volume. The derivatives are shown to be related to the possible task space accelerations at a singular configuration. In the case of parallel manipulators, singularities may lead to either loss or gain of one or more degrees-of-freedom. For loss of one or more degrees-of-freedom, ther possible velocities and accelerations are again obtained from a modified metric and derivatives of the metric coefficients. In the case of a gain of one or more degrees-of-freedom, the possible task space velocities can be pictured as growth to lines, ellipses, and ellipsoids. The theoretical results are illustrated with the help of a general spatial 2R manipulator and a three-degree-of-freedom RPSSPR-SPR parallel manipulator.
Resumo:
Optical parameters of chalcogenide glass multilayers with 12–15 nm modulation lengths prepared by thermal evaporation can be changed by laser irradiation. Photoluminescence (PL) studies were carried out on such nonirradiated and irradiated multilayered samples of a-Se/As2S3 (sublayer thickness of a-Se is 4–5 nm for one set of samples and 1–2 nm for the other set. However As2S3 sublayer thickness is 11–12 nm for both sets of samples.) PL intensity can be increased by several orders of magnitude by reducing the Se well layer (lower band gap) thickness and can be further increased by irradiating the samples with appropriate wavelengths in the range of the absorption edge. The broadening of luminescence bands takes place either with a decrease in Se layer thickness or with irradiation. The former is due to the change in interface roughness and defects because of the enhanced structural disorder while the latter is due to photoinduced interdiffusion. The photoinduced interdiffusion creates defects at the interface between Se and As2S3 by forming an As–Se–S solid solution. From the deconvoluted PL spectrum, it is shown that the peak PL intensity, full width half maximum, and the PL quantum efficiency of particular defects giving rise to PL, can be tuned by changing the sublayer thickness or by interdiffusion.
Resumo:
It is a formidable challenge to arrange tin nanoparticles in a porous matrix for the achievement of high specific capacity and current rate capability anode for lithium-ion batteries. This article discusses a simple and novel synthesis of arranging tin nanoparticles with carbon in a porous configuration for application as anode in lithium-ion batteries. Direct carbonization of synthesized three-dimensional Sn-based MOF: K2Sn2(1,4-bdc)(3)](H2O) (1) (bdc = benzenedicarboxylate) resulted in stabilization of tin nanoparticles in a porous carbon matrix (abbreviated as Sn@C). Sn@C exhibited remarkably high electrochemical lithium stability (tested over 100 charge and discharge cycles) and high specific capacities over a wide range of operating currents (0.2-5 Ag-1). The novel synthesis strategy to obtain Sn@C from a single precursor as discussed herein provides an optimal combination of particle size and dispersion for buffering severe volume changes due to Li-Sn alloying reaction and provides fast pathways for lithium and electron transport.