328 resultados para Stochastic Approximation Algorithms
Resumo:
In this paper, we exploit the idea of decomposition to match buyers and sellers in an electronic exchange for trading large volumes of homogeneous goods, where the buyers and sellers specify marginal-decreasing piecewise constant price curves to capture volume discounts. Such exchanges are relevant for automated trading in many e-business applications. The problem of determining winners and Vickrey prices in such exchanges is known to have a worst-case complexity equal to that of as many as (1 + m + n) NP-hard problems, where m is the number of buyers and n is the number of sellers. Our method proposes the overall exchange problem to be solved as two separate and simpler problems: 1) forward auction and 2) reverse auction, which turns out to be generalized knapsack problems. In the proposed approach, we first determine the quantity of units to be traded between the sellers and the buyers using fast heuristics developed by us. Next, we solve a forward auction and a reverse auction using fully polynomial time approximation schemes available in the literature. The proposed approach has worst-case polynomial time complexity. and our experimentation shows that the approach produces good quality solutions to the problem. Note to Practitioners- In recent times, electronic marketplaces have provided an efficient way for businesses and consumers to trade goods and services. The use of innovative mechanisms and algorithms has made it possible to improve the efficiency of electronic marketplaces by enabling optimization of revenues for the marketplace and of utilities for the buyers and sellers. In this paper, we look at single-item, multiunit electronic exchanges. These are electronic marketplaces where buyers submit bids and sellers ask for multiple units of a single item. We allow buyers and sellers to specify volume discounts using suitable functions. Such exchanges are relevant for high-volume business-to-business trading of standard products, such as silicon wafers, very large-scale integrated chips, desktops, telecommunications equipment, commoditized goods, etc. The problem of determining winners and prices in such exchanges is known to involve solving many NP-hard problems. Our paper exploits the familiar idea of decomposition, uses certain algorithms from the literature, and develops two fast heuristics to solve the problem in a near optimal way in worst-case polynomial time.
Resumo:
We consider the problem of determining if two finite groups are isomorphic. The groups are assumed to be represented by their multiplication tables. We present an O(n) algorithm that determines if two Abelian groups with n elements each are isomorphic. This improves upon the previous upper bound of O(n log n) [Narayan Vikas, An O(n) algorithm for Abelian p-group isomorphism and an O(n log n) algorithm for Abelian group isomorphism, J. Comput. System Sci. 53 (1996) 1-9] known for this problem. We solve a more general problem of computing the orders of all the elements of any group (not necessarily Abelian) of size n in O(n) time. Our algorithm for isomorphism testing of Abelian groups follows from this result. We use the property that our order finding algorithm works for any group to design a simple O(n) algorithm for testing whether a group of size n, described by its multiplication table, is nilpotent. We also give an O(n) algorithm for determining if a group of size n, described by its multiplication table, is Abelian. (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
Four hybrid algorithms has been developed for the solution of the unit commitment problem. They use simulated annealing as one of the constituent techniques, and produce lower cost schedules; two of them have less overhead than other soft computing techniques. They are also more robust to the choice of parameters. A special technique avoids the generating of infeasible schedules, and thus reduces computation time.
Resumo:
Randomness in the source condition other than the heterogeneity in the system parameters can also be a major source of uncertainty in the concentration field. Hence, a more general form of the problem formulation is necessary to consider randomness in both source condition and system parameters. When the source varies with time, the unsteady problem, can be solved using the unit response function. In the case of random system parameters, the response function becomes a random function and depends on the randomness in the system parameters. In the present study, the source is modelled as a random discrete process with either a fixed interval or a random interval (the Poisson process). In this study, an attempt is made to assess the relative effects of various types of source uncertainties on the probabilistic behaviour of the concentration in a porous medium while the system parameters are also modelled as random fields. Analytical expressions of mean and covariance of concentration due to random discrete source are derived in terms of mean and covariance of unit response function. The probabilistic behaviour of the random response function is obtained by using a perturbation-based stochastic finite element method (SFEM), which performs well for mild heterogeneity. The proposed method is applied for analysing both the 1-D as well as the 3-D solute transport problems. The results obtained with SFEM are compared with the Monte Carlo simulation for 1-D problems.
Resumo:
Next generation wireless systems employ Orthogonal frequency division multiplexing (OFDM) physical layer owing to the high data rate transmissions that are possible without increase in bandwidth. While TCP performance has been extensively studied for interaction with link layer ARQ, little attention has been given to the interaction of TCP with MAC layer. In this work, we explore cross-layer interactions in an OFDM based wireless system, specifically focusing on channel-aware resource allocation strategies at the MAC layer and its impact on TCP congestion control. Both efficiency and fairness oriented MAC resource allocation strategies were designed for evaluating the performance of TCP. The former schemes try to exploit the channel diversity to maximize the system throughput, while the latter schemes try to provide a fair resource allocation over sufficiently long time duration. From a TCP goodput standpoint, we show that the class of MAC algorithms that incorporate a fairness metric and consider the backlog outperform the channel diversity exploiting schemes.
Resumo:
In this paper, we consider robust joint linear precoder/receive filter designs for multiuser multi-input multi-output (MIMO) downlink that minimize the sum mean square error (SMSE) in the presence of imperfect channel state information at the transmitter (CSIT). The base station (BS) is equipped with multiple transmit antennas, and each user terminal is equipped with one or more receive antennas. We consider a stochastic error (SE) model and a norm-bounded error (NBE) model for the CSIT error. In the case of CSIT error following SE model, we compute the desired downlink precoder/receive filter matrices by solving the simpler uplink problem by exploiting the uplink-downlink duality for the MSE region. In the case of the CSIT error following the NBE model, we consider the worst-case SMSE as the objective function, and propose an iterative algorithm for the robust transceiver design. The robustness of the proposed algorithms to imperfections in CSIT is illustrated through simulations.
Resumo:
A Trotter product formula is established for unitary quantum stochastic processes governed by quantum stochastic differential equations with constant bounded coefficients.
Resumo:
Relay selection for cooperative communications promises significant performance improvements, and is, therefore, attracting considerable attention. While several criteria have been proposed for selecting one or more relays, distributed mechanisms that perform the selection have received relatively less attention. In this paper, we develop a novel, yet simple, asymptotic analysis of a splitting-based multiple access selection algorithm to find the single best relay. The analysis leads to simpler and alternate expressions for the average number of slots required to find the best user. By introducing a new contention load' parameter, the analysis shows that the parameter settings used in the existing literature can be improved upon. New and simple bounds are also derived. Furthermore, we propose a new algorithm that addresses the general problem of selecting the best Q >= 1 relays, and analyze and optimize it. Even for a large number of relays, the scalable algorithm selects the best two relays within 4.406 slots and the best three within 6.491 slots, on average. We also propose a new and simple scheme for the practically relevant case of discrete metrics. Altogether, our results develop a unifying perspective about the general problem of distributed selection in cooperative systems and several other multi-node systems.
Resumo:
In this paper, we propose a self Adaptive Migration Model for Genetic Algorithms, where parameters of population size, the number of points of crossover and mutation rate for each population are fixed adaptively. Further, the migration of individuals between populations is decided dynamically. This paper gives a mathematical schema analysis of the method stating and showing that the algorithm exploits previously discovered knowledge for a more focused and concentrated search of heuristically high yielding regions while simultaneously performing a highly explorative search on the other regions of the search space. The effective performance of the algorithm is then shown using standard testbed functions, when compared with Island model GA(IGA) and Simple GA(SGA).
Resumo:
Gene expression noise results in protein number distributions ranging from long-tailed to Gaussian. We show how long-tailed distributions arise from a stochastic model of the constituent chemical reactions and suggest that, in conjunction with cooperative switches, they lead to more sensitive selection of a subpopulation of cells with high protein number than is possible with Gaussian distributions. Single-cell-tracking experiments are presented to validate some of the assumptions of the stochastic simulations. We also examine the effect of DNA looping on the shape of protein distributions. We further show that when switches are incorporated in the regulation of a gene via a feedback loop, the distributions can become bimodal. This might explain the bimodal distribution of certain morphogens during early embryogenesis.
Resumo:
The Hybrid approach introduced by the authors for at-site modeling of annual and periodic streamflows in earlier works is extended to simulate multi-site multi-season streamflows. It bears significance in integrated river basin planning studies. This hybrid model involves: (i) partial pre-whitening of standardized multi-season streamflows at each site using a parsimonious linear periodic model; (ii) contemporaneous resampling of the resulting residuals with an appropriate block size, using moving block bootstrap (non-parametric, NP) technique; and (iii) post-blackening the bootstrapped innovation series at each site, by adding the corresponding parametric model component for the site, to obtain generated streamflows at each of the sites. It gains significantly by effectively utilizing the merits of both parametric and NP models. It is able to reproduce various statistics, including the dependence relationships at both spatial and temporal levels without using any normalizing transformations and/or adjustment procedures. The potential of the hybrid model in reproducing a wide variety of statistics including the run characteristics, is demonstrated through an application for multi-site streamflow generation in the Upper Cauvery river basin, Southern India. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Two algorithms are outlined, each of which has interesting features for modeling of spatial variability of rock depth. In this paper, reduced level of rock at Bangalore, India, is arrived from the 652 boreholes data in the area covering 220 sqa <.km. Support vector machine (SVM) and relevance vector machine (RVM) have been utilized to predict the reduced level of rock in the subsurface of Bangalore and to study the spatial variability of the rock depth. The support vector machine (SVM) that is firmly based on the theory of statistical learning theory uses regression technique by introducing epsilon-insensitive loss function has been adopted. RVM is a probabilistic model similar to the widespread SVM, but where the training takes place in a Bayesian framework. Prediction results show the ability of learning machine to build accurate models for spatial variability of rock depth with strong predictive capabilities. The paper also highlights the capability ofRVM over the SVM model.
Resumo:
In this paper, we propose a self Adaptive Migration Model for Genetic Algorithms, where parameters of population size, the number of points of crossover and mutation rate for each population are fixed adaptively. Further, the migration of individuals between populations is decided dynamically. This paper gives a mathematical schema analysis of the method stating and showing that the algorithm exploits previously discovered knowledge for a more focused and concentrated search of heuristically high yielding regions while simultaneously performing a highly explorative search on the other regions of the search space. The effective performance of the algorithm is then shown using standard testbed functions, when compared with Island model GA(IGA) and Simple GA(SGA).
Resumo:
Two optimal non-linear reinforcement schemes—the Reward-Inaction and the Penalty-Inaction—for the two-state automaton functioning in a stationary random environment are considered. Very simple conditions of symmetry of the non-linear function figuring in the reinforcement scheme are shown to be necessary and sufficient for optimality. General expressions for the variance and rate of learning are derived. These schemes are compared with the already existing optimal linear schemes in the light of average variance and average rate of learning.