191 resultados para Disulfide Bond Isomerization
Resumo:
A detailed investigation of viscosity dependence of the isomerization rate is carried out for continuous potentials by using a fully microscopic, self-consistent mode-coupling theory calculation of both the friction on the reactant and the viscosity of the medium. In this calculation we avoid approximating the short time response by the Enskog limit, which overestimates the friction at high frequencies. The isomerization rate is obtained by using the Grote-Hynes formula. The viscosity dependence of the rate has been investigated for a large number of thermodynamic state points. Since the activated barrier crossing dynamics probes the high-frequency frictional response of the liquid, the barrier crossing rate is found to be sensitive to the nature of the reactant-solvent interaction potential. When the solute-solvent interaction is modeled by a 6-12 Lennard-Jones potential, we find that over a large variation of viscosity (eta), the rate (k) can indeed be fitted very well to a fractional viscosity dependence: (k similar to eta(-alpha)), with the exponent alpha in the range 1 greater than or equal to alpha >0. The calculated values of the exponent appear to be in very good agreement with many experimental results. In particular, the theory, for the first time, explains the experimentally observed high value of alpha even at the barrier frequency, omega(b). similar or equal to 9 X 10(12) s(-1) for the isomerization reaction of 2-(2'-propenyl)anthracene in liquid eta-alkanes. The present study can also explain the reason for the very low value of vb observed in another study for the isomerization reaction of trans-stilbene in liquid n-alkanes. For omega(b) greater than or equal to 2.0 X 10(13) s(-1), we obtain alpha similar or equal to 0, which implies that the barrier crossing rate becomes identical to the transition-state theory predictions. A careful analysis of isomerization reaction dynamics involving large amplitude motion suggests that the barrier crossing dynamics itself may become irrelevant in highly viscous liquids and the rate might again be coupled directly to the viscosity. This crossover is predicted to be strongly temperature dependent and could be studied by changing the solvent viscosity by the application of pressure. (C) 1999 American Institute of Physics. [S0021-9606(9950514-X].
Resumo:
The serendipitous observation of a C-H...O hydrogen bond mediated polypeptide chain reversal in synthetic peptide helices has led to a search for the occurrence of a similar motif in protein structures. From a dataset of 634 proteins, 1304 helices terminating in a Schellman motif have been examined. The C-H...O interaction between the T - 4 (CH)-H-alpha and T + 1 C=O group (C...O 3.5 Angstrom) becomes possible only when the T + 1 residue adopts an extended beta conformation (T is defined as the helix terminating residue adopting an alpha(L) conformation). In all, 111 examples of this chain reversal motif have been identified and the compositional and conformational. preferences at positions T - 4, T, and T + 1 determined. A marked preference for residues like Set, Glu and Gln is observed at T - 4 position with the motif being further stabilized by the formation of a side-chain-backbone O...H-N hydrogen bond involving the side-chain of residue T - 4 and the N-H group of residue T + 3. In as many as 57 examples, the segment following the helix was extended with three to four successive residues in beta conformation. In a majority of these cases, the succeeding beta strand lies approximately antiparallel with the helix, suggesting that the backbone C-H...O interactions may provide a means of registering helices and strands in an antiparallel orientation. Two examples were identified in which extended registry was detected with two sets of C-H...O hydrogen bonds between (T - 4) (CH)-H-alpha...C=O (T + 1) and (T - 8) (CH)-H-alpha...C=O (T + 3). 0 2002 Published by Elsevier Science Ltd.
Resumo:
The trans- and cis-stilbenes upon inclusion in NaY zeolite are thermally stable. Direct excitation and triplet sensitization results in geometric isomerization and the excited state behavior under these conditions are similar to that in solution. Upon direct excitation, a photostationary state consisting of 65% cis and 35% trans isomers is established. Triplet sensitization with 2-acetonaphthone gave a photostationary state consisting of 63% cis and 37% trans isomers. These numbers are similar to the ones obtained in solution. Thus, the presence of cations and the confined space within the zeolite have very little influence on the overall chemistry during direct and triplet sensitization. However, upon electron transfer sensitization with N-methylacridinium (NMA) as the sensitizer within NaY, isomerization from cis-stilbene radical cation to trans-stilbene occurs and the recombination of radical ions results in triplet stilbene. Prolonged irradiation gave a photostationary state (65% cis and 35% trans) similar to triplet sensitization. This behavior is unique to the zeolite and does not take place in solution. Steady state fluorescence measurements showed that the majority of stilbene molecules are close to the N-methylacridinium sensitizer. Diffuse reflectance flash photolysis studies established that independent of the isomer being sensitized only trans radical cation is formed. Triplet stilbene is believed to be generated via recombination of stilbene radical cation and sensitizer radical anion. One should be careful in using acidic HY zeolite as a medium for photoisomerization of stilbenes. In our hands, in these acidic zeolites isomerization dominated the photoisomerization. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Eosinophil Cationic Protein (ECP) is a member of RNase A superfamily which carries out the obligatory catalytic role of cleaving RNA. It is involved in a variety of biological functions. Molecular dynamics simulations followed by essential dynamics analysis on this protein are carried out with the goal of gaining insights into the dynamical properties at atomic level. The top essential modes contribute to subspaces and to the transition phase. Further, the sidechain-sidechain/sidechain-mainchain hydrogen bond clusters are analyzed in the top modes, and compared with those of crystal structure. The role of residues identified by these methods is discussed in the context of concerted motion, structure and stability of the protein.
Resumo:
The dynamics of hydrogen bonds among water molecules themselves and with the polar head groups (PHG) at a micellar surface have been investigated by long molecular dynamics simulations. The lifetime of the hydrogen bond between a PHG and a water molecule is found to be much longer than that between any two water molecules, and is likely to be a general feature of hydrophilic surfaces of organized assemblies. Analyses of individual water trajectories suggest that water molecules can remain bound to the micellar surface for more than 100 ps. The activation energy for such a transition from the bound to a free state for the water molecules is estimated to be about 3.5 kcal/mol.
Resumo:
An experimental investigation on the bond strength of the interface between mortar and aggregate is reported. Composite compact specimens were used for applying Mode I and Mode 11 loading effects. The influence of the type of mortar and type of aggregate and its roughness on the bond strength of the interface has been studied. It has been observed that the bond strength of the interface in tension is significantly low, though the mortars exhibited higher strength. The highest tensile bond strength values have been observed with rough concrete surface with M-13 mortar. The bond strength of the interface in Mode I load depends on the type of aggregate surface and its roughness, and the type of mortar, The bond strength of the interface between mortar M-13 cast against rough concrete in direct tension seems to be about one third of the strength of the mortar. However, it is about 1/20th to 1/10th with the mortar M-12 in sandwiched composite specimens. The bond strength of the interface in shear (Mode IT) significantly increases as the roughness and the phase angle of the aggregate surface increase. The strength of mortar on the interface bond strength has been very significant. The sandwiched composite specimens show relatively low bond strength in Mode I loading. The behavior of the interface in both Mode I and Mode 11 loading effects has been brittle, indicating catastrophic failure. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Resonance Raman (RR) spectra are presented for p-nitroazobenzene dissolved in chloroform using 18 excitation Wavelengths, covering the region of (1)(n --> pi*) electronic transition. Raman intensities are observed for various totally symmetric fundamentals, namely, C-C, C-N, N=N, and N-O stretching vibrations, indicating that upon photoexcitation the excited-state evolution occurs along all of these vibrational coordinates. For a few fundamentals, interestingly, in p-nitroazobenzene, it is observed that the RR intensities decrease near the maxima of the resonant electronic (1)(n --> pi*) transition. This is attributed to the interference from preresonant scattering due to the strongly allowed (1)(pi --> pi*) electronic transition. The electronic absorption spectrum and the absolute Raman cross section for the nine Franck-Condon active fundamentals of p-nitroazobenzene have been successfully modeled using Heller's time-dependent formalism for Raman scattering. This employs harmonic description of the lowest energy (1)(n --> pi*) potential energy surface. The short-time isomerization dynamics is then examined from a priori knowledge of the ground-state normal mode descriptions of p-nitroazobenzene to convert the wave packet motion in dimensionless normal coordinates to internal coordinates. It is observed that within 20 fs after photoexcitation in p-nitroazobenzene, the N=N and C-N stretching vibrations undergo significant changes and the unsubstituted phenyl ring and the nitro stretching vibrations are also distorted considerably.
Resumo:
Through a systematic study of several diphenylcyclopropane derivatives, we have inferred that the cations present within a zeolite control the excited-state chemistry of these systems. In the parent 1,2-diphenylcylopropane, the cation binds to the two phenyl rings in a sandwich-type arrangement, and such a mode of binding prevents cis-to-trans isomerization. Once an ester or amide group is introduced into the system (derivatives of 2beta,3beta-diphenylcyclopropane-1alpha-carboxylic acid), the cation binds to the carbonyl group present in these chromophores and such a binding has no influence on the cis-trans isomerization process. Cation-reactant structures computed at density functional theory level have been very valuable in rationalizing the observed photochemical behavior of diphenylcyclopropane derivatives included in zeolites. While the parent system, 1,2-diphenyleylopropane, has been extensively investigated in the context of chiral induction in solution, owing to its failure to isomerize from cis to trans, the same could not be investigated in zeolites. However, esters of 2beta,3beta-diphenylcyclopropane-1alpha-carboxylic acid could be studied within zeolites in the context of chiral induction. Chiral induction as high 20% ee and 55% de has been obtained with selected systems. These numbers, although low, are much higher than what has been obtained in solution with the same system or with the parent system by other investigators (maximum similar to10% ee).
Resumo:
The design and synthesis of agents that can abstract zinc from their [CCXX] (C=cysteine; X=cysteine/histidine) boxes by thioldisulfide exchange-having as control, the redox parities of the core sulfur ligands of the reagent and the enzyme, has been illustrated, and their efficiency demonstrated by monitoring the inhibition of the transcription of calf thymus DNA by E. coli RNA polymerase, which harbors two zinc atoms in their [CCXX] boxes of which one is exchangeable. Maximum inhibition possible with removal of the exchangeable zinc was seen with redox-sulfanilamide-glutamate composite. In sharp contrast, normal chelating agents (EDTA, phenanthroline) even in a thousand fold excess showed only marginal inhibition, thus supporting an exchange mechanism for the metal removal. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Azophenol complexes of formulation [(η6-p-cymene)RuCl(Ln)] (1–6, n=1–6) were prepared by two synthetic methods involving either an oxygen insertion to the Ru---C bond in cycloruthenated precursors forming complexes 1 and 2 or from the reaction of [{(η6-p-cymene)RuCl}2(μ-Cl)2] with azophenol ligands (HL3–HL6) in the presence of sodium carbonate in CH2Cl2. The molecular structure of the 1-(phenylazo)-2-naphthol complex has been determined by X-ray crystallography. The complex has a η6-p-cymene group, a chloride and a bidentate N,O-donor azophenol ligand. The complexes have been characterized from NMR spectral data. The catalytic activity of the complexes has been studied for the conversion of acetophenone to the corresponding alcohol in the presence of KOH and isopropanol. Complexes 4 and 6 having a methoxy group attached to the ortho-position of the phenylazo moiety and 2 with a methyl group in the meta-position of the phenolic moiety show high percentage conversion (>84%).
Resumo:
Addition of excess carbon disulfide to cis/trans-[(dPPM)(2)Ru(H)(2)] results in the methanedithiolate complex [(dppm)(2)Ru(eta(2)-S2CH2)] 4 via the intermediacy of cis-[(dppm)(2)Ru(H)(SC(S)H)] 2. The X-ray crystal structure of this species has been determined.
Resumo:
A series of new dicationic dihydrogen complexes of ruthenium of the type cis-[(dppm)(2)Ru(eta(2)-H-2)(L)][BF4](2) (dppm = Ph2PCH2PPh2; L = P(OMe)(3), P(OEt)(3), PF((OPr)-Pr-i)(2)) have been prepared by protonating the precursor hydride complexes cis-[(dppm)(2)Ru(H)(L)][BF4] (L = P(OMe)(3), P(OEt)(3), P((OPr)-Pr-i)(3)) using HBF4.Et2O. The cis-[(dppm)(2)Ru(H)(L)][BF4] complexes were obtained from the trans hydrides via an isomerization reaction that is acid-accelerated. This isomerization reaction gives mixtures of cis and trans hydride complexes, the ratios of which depend on the cone angles of the phosphite ligands: the greater the cone angle, the greater is the amount of the cis isomer. The eta(2)-H-2 ligand in the dihydrogen complexes is labile, and the loss of H-2 was found to be reversible. The protonation reactions of the starting hydrides with trans PMe3 or PMe2Ph yield mixtures of the cis and the trans hydride complexes; further addition of the acid, however, give trans-[(dPPM)(2)Ru(BF4)Cl]. The roles of the bite angles of the dppm ligand as well as the steric and the electronic properties of the monodentate phosphorus ligands in this series of complexes are discussed. X-ray crystal structures of trans-[(dppm)(2)Ru(H)(P(OMe)(3))][BF4], cis-[(dppm)(2)Ru-(H)(P(OMe)(3))][BF4], and cis-[(dppm)(2)Ru(H)(P((OPr)-Pr-i)(3))][BF4] complexes have been determined.
Resumo:
Fragmentation behavior of two classes of cyclodepsipeptides, isariins and isaridins, obtained from the fungus Isaria, was investigated in the presence of different metal ions using multistage tandem mass spectrometry (MS(n)) with collision induced dissociation (CID) and validated by NMR spectroscopy. During MS(n) process, both protonated and metal-cationized isariins generated product ions belonging to the identical `b-ion' series, exhibiting initial backbone cleavage explicitly at the beta-ester bond. Fragmentation behavior for the protonated and metal-cationized acyclic methyl ester derivative of isariins was very similar. On the contrary, isaridins during fragmentation produced ions belonging to the `b' or/and the `y' ion series depending on the nature of interacting metal ions, due to initial backbone cleavages at the beta-ester linkage or/and at a specific amide linkage. Interestingly, independent of the nature of the interacting metal ions, the product ions formed from the acyclic methyl ester derivative of isaridins belonged only to the `y-type'. Complementary NMR data showed that, while all metal ions were located around the beta-ester group of isariins, the metal ion interacting sites varied across the backbone for isaridins. Combined MS and NMR data suggest that the different behavior in sequence specific charge-driven fragmentation of isariins and isaridins is predetermined because of the constituent beta-hydroxy acid residue in isariins and the cis peptide bond in isaridins.