153 resultados para DUAL CATALYST
Resumo:
A square ring microstrip antenna can be modified for dual-band operations by appropriately attaching an open ended stub. The input impedance of this antenna is analyzed here using multi-port network modeling (MNM) approach. The coupled feed is included by defining additional terms in the model. A prototype antenna is fabricated and tested to validate these computations.
Resumo:
In this paper, sliding mode control theory based guidance laws to intercept non-maneuvering targets at a desired impact angle are presented. The desired impact angle, defined in terms of a desired line-of-sight (LOS) angle, is achieved by selecting the missile's lateral acceleration (latax) to enforce sliding mode on a sliding surface based on this LOS angle. As will be shown, this guidance law does not ensure interception for all states of the missile and the target during the engagement. Hence, to satisfy the requirement of interception at the desired impact angle, a second sliding surface is designed and a switching logic, based on the conditions necessary for interception, is presented that allows the latax to switch between enforcing sliding mode on one of these surfaces so that the target can be intercepted at the desired impact angle. The guidance laws are designed using non-linear engagement dynamics.
Resumo:
Presented in this paper is an improvement over a spring-steel dual-axis accelerometer that we had reported earlier.The fabrication process (which entails wire-cut electro discharge machining of easily accessible and inexpensive spring-steelfoil) and the sensing of the displacement (which is done using off-the-shelf Hall-effect sensors) remain the same. Theimprovements reported here are twofold: (i) the footprint of the packaged accelerometer is reduced from 80 mm square to 40mm square, and (ii) almost perfect de-coupling and symmetry are achieved between the two in-plane axes of the packageddevice as opposed to the previous embodiment where this was not the case. Good linearity with about 40 mV/g was measuredalong both the in-plane axes over a range of 0.1 to 1 g. The first two natural frequencies of the devices are at 30 Hz and 100Hz, respectively, as per the experiment. The highlights of this work are cost-effective processing, easy integration of the Hall-effect sensing capability on a customised printed circuit board, and inexpensive packaging without overly compromising eitherthe overall size or the sensitivity of the accelerometer. Through this work, we have reaffirmed the practicability of spring-steelaccelerometers towards the eventual goal of making it compete with micro machined silicon accelerometers in terms of sizeand performance. The cost is likely to be much lower for the spring-steel accelerometers than that of silicon accelerometers, especially when the volume of production is low and the sensor is to be used as a single packaged unit.
Resumo:
The synthesis and optical properties of four new triarylborane-dipyrromethane (TAB-DPM) conjugates (3a-d) containing dual binding sites (hydrogen bond donor and Lewis acid) have been reported. The new compounds exhibit a selective fluorogenic response towards the F-ion. The NMR titrations show that the anions bind to the TAB-DPM conjugates via the Lewis acidic triarylborane centre in preference to the hydrogen bond donor (dipyrromethane) units.
Resumo:
The present study demonstrates the use of few-layer borocarbonitride nanosheets synthesized by a simple method as non-platinum cathode catalysts for the oxygen reduction reaction (ORR) in alkaline medium. Composition-dependent ORR activity is observed and the best performance was found when the composition was carbon-rich. Mechanistic aspects reveal that ORR follows the 4e(-) pathway with kinetic parameters comparable to those of the commercial Pt/C catalyst. Excellent methanol tolerance is observed with the BCN nanosheets unlike with Pt/C.
Resumo:
An efficient, robust and highly enantioselective catalytic desymmetrization of 2,2-disubstituted cyclopentene-1,3-diones is developed via direct vinylogous nucleophilic addition of deconjugated butenolides. A remarkable influence of the secondary catalyst site on the enantioselectivity points towards an intriguing mechanistic scenario, possibly by triggering a change in catalyst conformation.
Resumo:
Formation of an amorphous cobalt based oxygen evolution catalyst called Co-Pi has been recently reported from a neutral phosphate buffer solution containing Co2+. But the concentration of Co2+ is as low as 0.5 mM due to poor solubility of a cobalt salt in phosphate medium. In the present study, a cobalt acetate based oxygen evolution catalyst (Co-Ac) is prepared from a neutral acetate buffer solution, where the solubility of Co2+ is very high (>100 times in comparison with phosphate buffer solution). The Co-Ac possesses better catalytic activity than the Co-Pi with an additional advantage of easy bulk scale preparation. The comparative studies on the oxygen evolution reaction (OER) activity of Co-Ac and Co-Pi in phosphate and acetate buffer electrolytes reveal that the Co-Ac exhibits enhanced synergistic catalytic activity in phosphate solution, probably due to partial substitution of acetate in the catalyst layer by phosphate, resulting in the formation of a Co-Ac-Pi catalyst.
Resumo:
A novel approach toward the synthesis of hollow silver nanoparticle (NP) cages built with building blocks of silver NPs by layer-by-layer (LbL) assembly is demonstrated. The size of the NP cage depends on the size of template used for the LbL assembly. The microcages showed a uniform distribution of spherical silver nanoparticles with an average diameter of 20 +/- 5 nm, which increased to 40 +/- S nm when the AgNO3 concentration was increased from 25 to 50 mM. Heat treatment of the polyelectrolyte capsules at 80 degrees C near their pK(a) values yielded intact nano/micro cages. These cages produced a higher conversion for the epoxidation of olefins and maintained their catalytic activity even after four successive uses. The nanocages exhibited unique and attractive characteristics for metal catalytic systems, thus offering the scope for further development as heterogeneous catalysts.
Resumo:
Polypyrrole (PPY) is grown on reduced graphene oxide (RGO) and the composite is studied as a catalyst for O-2 electrode in Li-O-2 cells. PPY is uniformly distributed on the two dimensional RGO layers. Li-O-2 cells assembled in a non-aqueous electrolyte using RGO-PPY catalyst exhibit an initial discharge capacity as high as 3358 mAh g(-1) (3.94 mAh cm(-2)) at a current density of 0.3 mA cm(-2). The voltage gap between the charge and discharge curves is less for Li-O-2(RGO-PPY) cell in comparison with Li-O-2(RGO) cell. The Li-O-2(RGO-PPY) cell delivers a discharge capacity of 550 mAh g(-1) (0.43 mAh cm(-2)) at a current density of 1.0 mA cm(-2). The results suggest that RGO-PPY is a promising catalyst of O-2 electrode for high rate rechargeable Li-O-2 cells. (C) 2014 The Electrochemical Society. All rights reserved.
Resumo:
Peripherally triarylborane decorated porphyrin (2) and its Zn(II) complex (3) have been synthesized. Compound 3 contains of two different Lewis acidic binding sites (Zn(II) and boron center). Unlike all previously known triarylborane based sensors, the optical responses of 3 toward fluoride and cyanide are distinctively different, thus enabling the discrimination of these two interfering anions. Metalloporphyrin 3 shows a multiple channel fluorogenic response toward fluoride and cyanide and also a selective visual colorimetric response toward cyanide. By comparison with model systems and from detailed photophysical studies on 2 and 3, we conclude that the preferential binding of fluoride occurs at the peripheral borane moieties resulting in the cessation of the EET (electronic energy transfer) process from borane to porphyrin core and with negligible negetive cooperative effects. On the other hand, cyanide binding occurs at the Zn(II) core leading to drastic changes in its absorption behavior which can be followed by the naked eye. Such changes are not observed when the boryl substituent is absent (e.g., Zn-TPP and TPP). Compounds 2 and 3 were also found to be capable of extracting fluoride from aqueous medium.
Resumo:
Long-term deterioration in the performance of PEFCs is attributed largely to reduction in active area of the platinum catalyst at cathode, usually caused by carbon-support corrosion. Multi-walled carbon-nanotubes (MWCNTs) as cathode-catalyst support are found to enhance long-term stability of platinum catalyst (Pt) in relation to non-graphitic carbon. In addition, highly graphitic MWCNTs (G-MWCNTs) are found to be electrochemically more stable than pristine MWCNTs. This is because graphitic-carbon-supported-Pt (Pt/MWCNTs) cathodes exhibit higher resistance to carbon corrosion in-relation to non-graphitic-carbon-supported-Pt (Pt/C) cathodes in PEFCs during accelerated stress-test (AST) as evidenced by chronoamperometry and carbon dioxide studies. The corresponding change in electrochemical surface area (ESA), cell performance, and charge-transfer resistance are monitored through cyclic voltammetry, cell polarization, and impedance measurements, respectively. The extent of crystallinity, namely amorphous or graphitic nature of the three supports, is examined by Raman spectroscopy. X-ray diffraction and transmission electron microscopy studies both prior and after AST suggest lesser deformation in catalyst layer and catalyst particles for Pt/G-MWCNTs and Pt/MWCNTs cathodes in relation to Pt/C cathodes, reflecting that graphitic carbon-support resists carbon corrosion and helps mitigating aggregation of Pt particles. It is also found that with increasing degree of graphitization, the electrochemical stability for MWCNTs increases due to the lesser surface defects.
Resumo:
Three new NPI-BODIPY dyads 1-3 (NPI = 1,8-naphthalimide, BODIPY = boron-dipyrromethene) were synthesized, characterized, and studied. The NPI and BODIPY moieties in these dyads are electronically separated by oxoaryl bridges, and the compounds only differ structurally with respect to methyl substituents on the BODIPY fluorophore. The NPI and BODIPY moieties retain their optical features in molecular dyads 1-3. Dyads 1-3 show dual emission in solution originating from the two separate fluorescent units. The variations of the dual emission in these compounds are controlled by the structural flexibilities of the systems. Dyads 13, depending on their molecular flexibilities, show considerably different spectral shapes and dissimilar intensity ratios of the two emission bands. The dyads also show significant aggregation-induced emission switching (AIES) on formation of nano-aggregates in THF/H2O with changes in emission color from green to red. Whereas the flexible and aggregation-prone compound 1 shows AIES, rigid systems with less favorable intermolecular interactions (i.e., 2 and 3) show aggregation-induced quenching of emission. Correlations of the emission intensity and structural flexibility were found to be reversed in solution and aggregated states. Photophysical and structural investigations suggested that intermolecular interactions (e. g., pi-pi stacking) play a major role in controlling the emission of these compounds in the aggregated state.
Resumo:
The superior catalytic activity along with improved CO tolerance for formic acid electro-oxidation has been demonstrated on a NiO-decorated reduced graphene oxide (rGO) catalyst. The cyclic voltammetry response of rGO-NiO/Pt catalyst elucidates improved CO tolerance and follows direct oxidation pathway. It is probably due to the beneficial effect of residual oxygen groups on rGO support which is supported by FT-IR spectrum. A strong interaction of rGO support with NiO nanoparticles facilitates the removal of CO from the catalyst surface. The chronoamperometric response indicates a higher catalytic activity and stability of rGO-NiO/Pt catalyst than the NiO/Pt and unmodified Pt electrode catalyst for a prolonged time of continuous oxidation of formic acid. Copyright (C) 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
Resumo:
Dual photoluminescence (PL) emission characteristics of Mn2+ doped ZnS (ZnS:Mn) quantum dots (QDs) have drawn a lot of attention recently. However, here we report the effect of thermal annealing on the PL emission characteristics of uncapped ZnS:Mn QDs of average sizes similar to 2-3 nm, synthesized by simple chemical precipitation method by using de-ionized (DI) water at room temperature. As-synthesized samples show dual PL emissions, having one UV PL band centred at similar to 400 nm and the other in the visible region similar to 610 nm. But when the samples are isochronally annealed for 2 h at 100-600 degrees C temperature range in air, similar to 90% quenching of Mn2+ related visible PL emission intensity takes place at the annealing temperature of 600 degrees C. X-ray diffraction data show that the as-synthesized cubic ZnS has been converted to wurtzite ZnO at 600 degrees C annealing temperature. The nanostructural properties of the samples are also determined by transmission electron micrograph, electron probe micro-analyser and UV-vis spectrophotometry. The photocatalytic property of the annealed ZnS:Mn sample has been demonstrated and photo-degradation efficiency of the as-synthesized and 600 degrees C annealed ZnS:Mn sample has been found out to be similar to 35% and similar to 61%, respectively, for the degradation of methylene blue dye under visible light irradiation. The synthesized QDs may find significant applications in future optoelectronic devices. (C) 2014 Elsevier B.V. All rights reserved.