148 resultados para DIFFERENTIAL GAIN
Resumo:
Wavelength-division multiplexing (WDM) technology, by which multiple optical channels can be simultaneously transmitted at different wavelengths through a single optical fiber, is a useful means of making full use of the low-loss characteristics of optical fibers over a wide-wavelength region. The present day multifunction RADARs with multiple transmit receive modules requires various kinds of signal distribution for real time operation. If the signal distribution can be achieved through optical networks by using Wavelength Division Multiplexing (WDM) methods, it results in a distribution scheme with less hardware complexity and leads to the reduction in the weight of the antenna arrays In addition, being an Optical network it is free from Electromagnetic interference which is a crucial requirement in an array environment. This paper discusses about the analysis performed on various WDM components of distribution optical network for radar applications. The analysis is performed by considering the feasible constant gain regions of Erbium doped fiber amplifier (EDFA) in Matlab environment. This will help the user in the selection of suitable components for WDM based optical distribution networks.
Resumo:
Stimulated optical signals obtained by subjecting the system to a narrow band and a broadband pulse show both gain and loss Raman features at the red and blue side of the narrow beam, respectively. Recently observed temperature-dependent asymmetry in these features Mallick et al., J. Raman Spectrosc. 42, 1883 (2011); Dang et al., Phys. Rev. Lett. 107, 043001 (2011)] has been attributed to the Stokes and anti-Stokes components of the third-order susceptibility, chi((3)). By treating the setup as a steady state of an open system coupled to four quantum radiation field modes, we show that Stokes and anti-Stokes processes contribute to both the loss and gain resonances. chi((3)) predicts loss and gain signals with equal intensity for electronically off-resonant excitation. Some asymmetry may exist for resonant excitation. However, this is unrelated to the Stokes vs anti-Stokes processes. Any observed temperature-dependent asymmetry must thus originate from effects lying outside the chi((3)) regime.
Resumo:
In this work, we present a study on the negative differential resistance (NDR) behavior and the impact of various deformations (like ripple, twist, wrap) and defects like vacancies and edge roughness on the electronic properties of short-channel MoS2 armchair nanoribbon MOSFETs. The effect of deformation (3 degrees-7 degrees twist or wrap and 0.3-0.7 angstrom ripple amplitude) and defects on a 10 nm MoS2 ANR FET is evaluated by the density functional tight binding theory and the non-equilibrium Green's function approach. We study the channel density of states, transmission spectra, and the I-D-V-D characteristics of such devices under the varying conditions, with focus on the NDR behavior. Our results show significant change in the NDR peak to valley ratio and the NDR window with such minor intrinsic deformations, especially with the ripple. (C) 2013 AIP Publishing LLC.
Resumo:
Growth of multicellular organisms depends on maintenance of proper balance between proliferation and differentiation. Any disturbance in this balance in animal cells can lead to cancer. Experimental evidence is provided to conclude with special reference to the action of follicle-stimulating hormone (FSH) on Sertoli cells, and luteinizing hormone (LH) on Leydig cells that these hormones exert a differential action on their target cells, i.e., stimulate proliferation when the cells are in an undifferentiated state which is the situation with cancer cells and promote only functional parameters when the cell are fully differentiated. Hormones and growth factors play a key role in cell proliferation, differentiation, and apoptosis. There is a growing body of evidence that various tumors express some hormones at high levels as well as their cognate receptors indicating the possibility of a role in progression of cancer. Hormones such as LH, FSH, and thyroid-stimulating hormone have been reported to stimulate cell proliferation and act as tumor promoter in a variety of hormone-dependent cancers including gonads, lung, thyroid, uterus, breast, prostate, etc. This review summarizes evidence to conclude that these hormones are produced by some cancer tissues to promote their own growth. Also an attempt is made to explain the significance of the differential action of hormones in progression of cancer with special reference to prostate cancer.
Resumo:
We propose a novel form of nonlinear stochastic filtering based on an iterative evaluation of a Kalman-like gain matrix computed within a Monte Carlo scheme as suggested by the form of the parent equation of nonlinear filtering (Kushner-Stratonovich equation) and retains the simplicity of implementation of an ensemble Kalman filter (EnKF). The numerical results, presently obtained via EnKF-like simulations with or without a reduced-rank unscented transformation, clearly indicate remarkably superior filter convergence and accuracy vis-a-vis most available filtering schemes and eminent applicability of the methods to higher dimensional dynamic system identification problems of engineering interest. (C) 2013 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.
Resumo:
In this paper, a new method is proposed to obtain full-diversity, rate-2 (rate of two complex symbols per channel use) space-time block codes (STBCs) that are full-rate for multiple input double output (MIDO) systems. Using this method, rate-2 STBCs for 4 x 2, 6 x 2, 8 x 2, and 12 x 2 systems are constructed and these STBCs are fast ML-decodable, have large coding gains, and STBC-schemes consisting of these STBCs have a non-vanishing determinant (NVD) so that they are DMT-optimal for their respective MIDO systems. It is also shown that the Srinath-Rajan code for the 4 x 2 system, which has the lowest ML-decoding complexity among known rate-2 STBCs for the 4x2 MIDO system with a large coding gain for 4-/16-QAM, has the same algebraic structure as the STBC constructed in this paper for the 4 x 2 system. This also settles in positive a previous conjecture that the STBC-scheme that is based on the Srinath-Rajan code has the NVD property and hence is DMT-optimal for the 4 x 2 system.
Resumo:
This paper presents a novel, soft computing based solution to a complex optimal control or dynamic optimization problem that requires the solution to be available in real-time. The complexities in this problem of optimal guidance of interceptors launched with high initial heading errors include the more involved physics of a three dimensional missile-target engagement, and those posed by the assumption of a realistic dynamic model such as time-varying missile speed, thrust, drag and mass, besides gravity, and upper bound on the lateral acceleration. The classic, pure proportional navigation law is augmented with a polynomial function of the heading error, and the values of the coefficients of the polynomial are determined using differential evolution (DE). The performance of the proposed DE enhanced guidance law is compared against the existing conventional laws in the literature, on the criteria of time and energy optimality, peak lateral acceleration demanded, terminal speed and robustness to unanticipated target maneuvers, to illustrate the superiority of the proposed law. (C) 2013 Elsevier B. V. All rights reserved.
Resumo:
DNA gyrase is a type II topoisomerase that catalyzes the introduction of negative supercoils in the genomes of eubacteria. Fluoroquinolones (FQs), successful as drugs clinically, target the enzyme to trap the gyrase-DNA complex, leading to the accumulation of double-strand breaks in the genome. Mycobacteria are less susceptible to commonly used FQs. However, an 8-methoxy-substituted FQ, moxifloxacin (MFX), is a potent antimycobacterial, and a higher susceptibility of mycobacterial gyrase to MFX has been demonstrated. Although several models explain the mechanism of FQ action and gyrase-DNA-FQ interaction, the basis for the differential susceptibility of mycobacterial gyrase to various FQs is not understood. We have addressed the basis of the differential susceptibility of the gyrase and revisited the mode of action of FQs. We demonstrate that FQs bind both Escherichia coli and Mycobacterium tuberculosis gyrases in the absence of DNA and that the addition of DNA enhances the drug binding. The FQs bind primarily to the GyrA subunit of mycobacterial gyrase, while in E. coli holoenzyme is the target. The binding of MFX to GyrA of M. tuberculosis correlates with its effectiveness as a better inhibitor of the enzyme and its efficacy in cell killing.
Resumo:
Differential mobility analyzers (DMAs) are commonly used to generate monodisperse nanoparticle aerosols. Commercial DMAs operate at quasi-atmospheric pressures and are therefore not designed to be vacuum-tight. In certain particle synthesis methods, the use of a vacuum-compatible DMA is a requirement as a process step for producing high-purity metallic particles. A vacuum-tight radial DMA (RDMA) has been developed and tested at low pressures. Its performance has been evaluated by using a commercial NANO-DMA as the reference. The performance of this low-pressure RDMA (LP-RDMA) in terms of the width of its transfer function is found to be comparable with that of other NANO-DMAs at atmospheric pressure and is almost independent of the pressure down to 30 mbar. It is shown that LP-RDMA can be used for the classification of nanometer-sized particles (5-20 nm) under low pressure condition (30 mbar) and has been successfully applied to nanoparticles produced by ablating FeNi at low pressures.
Resumo:
Soft-decision multiple-symbol differential sphere decoding (MSDSD) is proposed for orthogonal frequency-division multiplexing (OFDM)-aided differential space-time shift keying (DSTSK)-aided transmission over frequency-selective channels. Specifically, the DSTSK signaling blocks are generated by the channel-encoded source information and the space-time (ST) blocks are appropriately mapped to a number of OFDM subcarriers. After OFDM demodulation, the DSTSK signal is noncoherently detected by our soft-decision MSDSD detector. A novel soft-decision MSDSD detector is designed, and the associated decision rule is derived for the DSTSK scheme. Our simulation results demonstrate that an SNR reduction of 2 dB is achieved by the proposed scheme using an MSDSD window size of N-w = 4 over the conventional soft-decision-aided differential detection benchmarker, while communicating over dispersive channels and dispensing with channel estimation (CE).
Resumo:
Here, we show the binding results of a leguminosae lectin, winged bean basic agglutinin (WBA I) to N-trifluoroacetylgalactosamine (NTFAGalN), methyl-alpha-N-trifluoroacetylgalactosamine (Me alpha NTFAGalN) and methyl-beta-tifluoroacetylgalactosamine (Me beta NTFAGalN) using (19) F NMR spectroscopy. No chemical shift difference between the free and bound states for NTFAGalN and Me beta NTFAGalN, and 0.01-ppm chemical shift change for Me alpha NTFAGalN, demonstrate that the Me alpha NTFAGalN has a sufficiently long residence time on the protein binding site as compared to Me beta NTFAGalN and the free anomers of NTFAGalN. The sugar anomers were found in slow exchange with the binding site of agglutinin. Consequently, we obtained their binding parameters to the protein using line shape analyses. Aforementioned analyses of the activation parameters for the interactions of these saccharides indicate that the binding of alpha and beta anomers of NTFAGalN and Me alpha NTFAGalN is controlled enthalpically, while that of Me beta NTFAGalN is controlled entropically. This asserts the sterically constrained nature of the interaction of the Me beta NTFAGalN with WBA I. These studies thus highlight a significant role of the conformation of the monosaccharide ligands for their recognition by WBA I.
Resumo:
In this paper, we consider a singularly perturbed boundary-value problem for fourth-order ordinary differential equation (ODE) whose highest-order derivative is multiplied by a small perturbation parameter. To solve this ODE, we transform the differential equation into a coupled system of two singularly perturbed ODEs. The classical central difference scheme is used to discretize the system of ODEs on a nonuniform mesh which is generated by equidistribution of a positive monitor function. We have shown that the proposed technique provides first-order accuracy independent of the perturbation parameter. Numerical experiments are provided to validate the theoretical results.
Resumo:
We affirmatively answer a question due to S. Bocherer concerning the feasibility of removing one differential operator from the standard collection of m + 1 of them used to embed the space of Jacobi forms of weight 2 and index m into several pieces of elliptic modular forms. (C) 2014 Elsevier Inc. All rights reserved.
Resumo:
Solvent effects play a vital role in various chemical, physical, and biological processes. To gain a fundamental understanding of the solute-solvent interactions and their implications on the energy level re-ordering and structure, UV-VIS absorption, resonance Raman spectroscopic, and density functional theory calculation studies on 9,10-phenanthrenequinone (PQ) in different solvents of diverse solvent polarity has been carried out. The solvatochromic analysis of the absorption spectra of PQ in protic dipolar solvents suggests that the longest (1n-pi(1)*; S-1 state) and the shorter (1 pi-pi(1)*; S-2 state) wavelength band undergoes a hypsochromic and bathochromic shift due to intermolecular hydrogen bond weakening and strengthening, respectively. It also indicates that hydrogen bonding plays a major role in the differential solvation of the S-2 state relative to the ground state. Raman excitation profiles of PQ (400-1800 cm(-1)) in various solvents followed their corresponding absorption spectra therefore the enhancements on resonant excitation are from single-state rather than mixed states. The hyperchromism of the longer wavelength band is attributed to intensity borrowing from the nearby allowed electronic transition through vibronic coupling. Computational calculation with C-2 nu symmetry constraint on the S-2 state resulted in an imaginary frequency along the low-frequency out-of-plane torsional modes involving the C=O site and therefore, we hypothesize that this mode could be involved in the vibronic coupling. (C) 2015 AIP Publishing LLC.