311 resultados para DIAMETER


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A filter cloth with 182 holes per 10−4 m2 has been used to generate air bubbles both in pure water and in aqueous solutions of electrolytes and non-electrolytes at various air flow rates. Potassium bromide and ammonium perchlorate were the electrolytes used, while the non-electrolytes were isopropanol, urea and glycerol. Bubble diameters and their size distribution were measured from photographs. The role of solutes in affecting bubble sizes and their distribution compared to that of pure water is discussed in the light of a hypothesis. This hypothesis assumes that if the final bubble diameter is less than the inter-orifice distance, then bubbles do not coalesce; on the other hand, if it is greater, then coalescence occurs when tf greater-or-equal, slantedti+ts, but does not occur when t

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Diglycidyl ether–bisphenol-A-based epoxies toughened with various levels (0–12%) of chemically reacted liquid rubber, hydroxyl-terminated poly(butadiene-co-acrylonitrile) (HTBN) were studied for some of the mechanical and thermal properties. Although the ultimate tensile strength showed a continuous decrease with increasing rubber content, the toughness as measured by the area under the stress-vs.-strain curve and flexural strength reach a maximum around an optimum rubber concentration of 3% before decreasing. Tensile modulus was found to increase for concentrations below 6%. The glass transition temperature Tg as measured by DTA showed no variation for the toughened formulations. The TGA showed no variations in the pattern of decomposition. The weight losses for the toughened epoxies at elevated temperatures compare well with that of the neat epoxy. Scanning electron microscopy revealed the presence of a dual phase morphology with the spherical rubber particles precipitating out in the cured resin with diameter varying between 0.33 and 6.3 μm. In contrast, a physically blended rubber–epoxy showed much less effect towards toughening with the precipitated rubber particles of much bigger diameter (0.6–21.3 μm).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

After microscopic characterization of the size distributions of gold clusters, deposited on carbon substrates by vacuum evaporation or by soft landing, Au(4f') binding energy of the clusters has been measured as a function of the mean cluster size. Similar measurements have been carried out on Au clusters prepared from sols by chemical means and high-nuclearity cluster compounds. In general, small clusters with a mean diameter of $2 nm show significantly larger binding energies than the bulk metal value, due to the onset of nonmetallicity. Nonmetallicity manifests itself in terms of a tunneling conductance gap only in clusters of diameter ;5 1 nm containing 40 atoms or fewer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Small gold clusters [mean diameter (d)[less, similar] 1.4 nm], unlike larger clusters, show a higher Au(4f) binding energy relative to the bulk value and the presence of a conductance gap in tunnelling measurements, just as the molecular cluster compound, Au55(PPh3)12Cl6; small platinum clusters show similar nonmetallic features.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A fairly comprehensive computer program incorporating explicit expressions for the four-pole parameters of concentric-tube resonators, plug mufflers, and three-duct cross-flow perforated elements has been used for parametric studies. The parameters considered are hole diameter, the center-to-center distance between consecutive holes (which decides porosity), the incoming mean flow Mach number, the area expansion ratio, the number of partitions of chambers within a given overall shell length, and the relative lengths of these partitions or chambers, all normalized with respect to the exhaust pipe diameter. Transmission loss has been plotted as a function of a normalized frequency parameter. Additionally, the effect of the tail pipe length on insertion loss for an anechoic source has also been studied. These studies have been supplemented by empirical expressions for the normalized static pressure drop for different types of perforated-element mufflers developed from experimental observations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chromium substituted beta diketonate complexes of aluminium have been synthesized and employed as precursors for a novel soft chemistry process wherein microwave irradiation of a solution of the complex yields within minutes well crystallized needles of alpha (Al1 XCrx)(2)O-3 measuring 20 30 nm in diameter and 50 nm long By varying the microwave irradiation parameters and using a surfactant such as polyvinyl pyrrolidone the crystallite size and shape can be controlled and their agglomeration prevented These microstructural parameters as well as the polymorph of the Cr substituted Al2O3 formed may also be controlled by employing a different complex Samples of alpha (Al1 XCrx)(2)O-3 have been characterized by XRD FTIR and TEM The technique results in material of homogeneous metal composition, as shown by EDAX and can be adjusted as desired The technique has been extended to obtain coatings of alpha (Al1 XCrx)(2)O-3 on Si(100)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The near orifice spray breakup at low GLR (gas to liquid ratio by mass) values in an effervescent atomizer is studied experimentally using water as a simulant and air as atomizing gas. From the visualizations, the near orifice spray structures are classified into three modes: discrete bubble explosions, continuous bubble explosions and annular conical spray. The breakup of the spray is quantified in terms of the mean bubble bursting distance from the orifice. The parametric study indicates that the mean bubble bursting distance mainly depends on airflow rate, jet diameter and mixture velocity. It is also observed that the jet diameter has a dominant effect on the bubble bursting distance when compared to mixture velocity at a given airflow rate. The mean bubble bursting distance is shown to be governed by a nondimensional two-phase flow number consisting of all the aforementioned parameters. The location of bubble bursting is found to be highly unsteady spatially, which is influenced by flow dynamics inside the injector. It is proposed that this unsteadiness in jet breakup length is a consequence of varying degree of bubble expansion caused due to the intermittent occurrence of single phase and two-phase flow inside the orifice.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hydrogen storage in the three-dimensional carbon foams is analyzed using classical grand canonical Monte Carlo simulations. The calculated storage capacities of the foams meet the material-based DOE targets and are comparable to the capacities of a bundle of well-separated similar diameter open nanotubes. The pore sizes in the foams are optimized for the best hydrogen uptake. The capacity depends sensitively on the C-H-2 interaction potential, and therefore, the results are presented for its ``weak'' and ``strong'' choices, to offer the lower and upper bounds for the expected capacities. Furthermore, quantum effects on the effective C-H-2 as well as H-2-H-2 interaction potentials are considered. We find that the quantum effects noticeably change the adsorption properties of foams and must be accounted for even at room temperature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this letter, a closed-form analytical model for temperature-dependent longitudinal diffusive lattice thermal conductivity (kappa) of a metallic single-walled carbon nanotube (SWCNT) has been addressed. Based on the Debye theory, the second-order three-phonon Umklapp, mass difference (MD), and boundary scatterings have been incorporated to formulate. in both low-and high-temperature regimes. It is proposed that. at low temperature (T) follows the T-3 law and is independent of the second-order three-phonon Umklapp and MD scatterings. The form factor due to MD scattering also plays a key role in the significant variation of. in addition to the SWCNT length. The present diameter-independent model of. agrees well with the available experimental data on suspended intrinsic metallic SWCNTs over a wide range of temperature and can be carried forward for electrothermal analyses of CNT-based interconnects.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Design, fabrication and preliminary testing of a flat pump with millimetre thickness are described in this paper. The pump is entirely made of polymer materials barring the magnet and copper coils used for electromagnetic actuation. The fabrication is carried out using widely available microelectronic packaging machinery and techniques. Therefore, the fabrication of the pump is straightforward and inexpensive. Two types of prototypes are designed and built. One consists of copper coils that are etched on an epoxy plate and the other has wound insulated wire of 90 mu m diameter to serve as a coil. The overall size of the first pump is 25 mm x 25 mm x 3.6 mm including the 3.1 mm-thick NdFeB magnet of diameter 12 mm. It consists of a pump chamber of 20 mm x 20 mm x 0.8 mm with copper coils etched from a copper-clad epoxy plate using dry-film lithography and milled using a CNC milling machine, two passive valves and the pump-diaphragm made of Kapton film of 0.089 mm thickness. The second pump has an overall size of 35 mm x 35 mm x 4.4 mm including the magnet and the windings. A breadboard circuit and DC power supply are used to test the pump by applying an alternating square-wave voltage pulse. A water slug in a tube attached to the inlet is used to observe and measure the air-flow induced by the pump against atmospheric pressure. The maximum flow rate was found to be 15 ml/min for a voltage of 2.5 V and a current of 19 mA at 68 Hz.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Low-cycle fatigue (LCF) responses of NIMONIC PE-16 for various prior microstructures and strain amplitudes have been evaluated and the fatigue behavior has been explained in terms of the operative deformation mechanisms. Total strain-controlled LCF tests were performed at 923 K on samples possessing three different prior microstructures: alloy A in solution-annealed condition (free of γ′ and carbides), alloy B with double aging treatment (spherical γ′ of 18-nm diameter and M23C6), and alloy C with another double aging treatment (γ′ of size 35 nm, MC and M23C6). All three microstructures exhibited an intial cyclic hardening followed by a period of gradual softening at 923 K. Coffin-Manson plots describing the plastic strain amplitudevs number of reversals to failure showed that alloy A had maximum fatigue life while C showed the least. Alloy B exhibited a two-slope behavior in the Coffin-Manson plot over the strain amplitudes investigated. This has been ascribed to the change in the degree of homogeneity of deformation at high and low strain amplitudes. Transmission electron microscopic studies were carried out to characterize the various deformation mechanisms and precipitation reactions occurring during fatigue testign. Fresh precipitation of fine γ′ was confirmed by the development of “mottled contrast” in alloy C. Evidence for the shearing of the ordered γ′ precipitates was revealed by the presence of superdislocations in alloy C. Repeated shearing during cyclic loading led to the reduction in the size of the γ′ and consequent softening. Coarser γ′ precipitates were associated with Orowan loops. The observed fatigue behavior has been rationalized based on the micromechanisms stated above and on the degree of homogenization of slip assessed by slipband spacing measurements on tested samples.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A systematic investigation of monatomic spherical sorbates in the supercages of zeolites Y and A by molecular dynamics technique is presented. Rates of intercage diffusion, rates of cage visits, and the diffusion coefficients have been calculated as a function of the sorbate-zeolite interaction strength. These properties exhibit markedly different dependences on interaction strength for the two zeolites. The observed behavior is shown to be a consequence of the two principal mechanisms of intercage diffusion and the energetic barrier associated with them. The diffusion coefficient and other properties associated with intercage diffusion are found to be directly proportional to the reciprocal of the square of the sorbate diameter when the sorbate diameter is significantly smaller than the window diameter. As the sorbate diameter increases, a peak is observed in all the transport properties investigated including the diffusion coefficient. We call this surprising effect as the ring or levitation effect and it explains several anomalous results reported in the literature and suggests a breakdown of the geometrical criterion for diffusion of sorbates. It shows that under certain conditions nongeometrical factors play a major role and geometrical factors become secondary in the determination of the molecular sieve property. A generalized parameter has been proposed which suggests conditions under which one can expect the ring or levitation effect in any porous medium. Inverse size selectivity becomes operative under these conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent computer simulations on zeolites Y and A have found that the diffusion coefficient and the rate of intercage diffusion exhibit, apart from a linear dependence on the reciprocal of the square of the sorbate diameter, an anomalous peak as sorbate diameter approaches the window diameter. Here we report molecular dynamics simulations of zeolite NaA incorporating framework flexibility as a function of sorbate diameter in order to verify the existence of anomalous diffusion. Results suggest persistence of anomalous diffusion or ring effect. This suggests that the anomalous behavior is a general effect characteristic of zeolites Y and A. The barrier for diffusion across the eight-ring window is seen to be negative and is found to decrease with sorbate size. The effect of sorbate on the cage motion has also been investigated. Results suggest that the window expands during intercage migration only if the sorbate size is comparable to the window diameter. Flexible cage simulations yield a higher value for the diffusion coefficient and also the rate of intercage diffusion. This increase has been shown to be due to an increase in the intercage diffusions via the centralized diffusion mode rather than the surface-mediated mode. It is shown that this increase arises from an increase in the single particle density distribution in the region near the cage center.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Strain-rate effects on the low-cycle fatigue (LCF) behavior of a NIMONIC PE-16 superalloy have been evaluated in the temperature range of 523 to 923 K. Total-strain-controlled fatigue tests were per-formed at a strain amplitude of +/-0.6 pct on samples possessing two different prior microstructures: microstructure A, in the solution-annealed condition (free of gamma' and carbides); and microstructure B, in a double-aged condition with gamma' of 18-nm diameter and M23C6 carbides. The cyclic stress response behavior of the alloy was found to depend on the prior microstructure, testing temperature, and strain rate. A softening regime was found to be associated with shearing of ordered gamma' that were either formed during testing or present in the prior microstructure. Various manifestations of dynamic strain aging (DSA) included negative strain rate-stress response, serrations on the stress-strain hysteresis loops, and increased work-hardening rate. The calculated activation energy matched well with that for self-diffusion of Al and Ti in the matrix. Fatigue life increased with an increase in strain rate from 3 x 10(-5) to 3 x 10(-3) s-1, but decreased with further increases in strain rate. At 723 and 823 K and low strain rates, DSA influenced the deformation and fracture behavior of the alloy. Dynamic strain aging increased the strain localization in planar slip bands, and impingement of these bands caused internal grain-boundary cracks and reduced fatigue life. However, at 923 K and low strain rates, fatigue crack initiation and propagation were accelerated by high-temperature oxidation, and the reduced fatigue life was attributed to oxidation-fatigue interaction. Fatigue life was maximum at the intermediate strain rates, where strain localization was lower. Strain localization as a function of strain rate and temperature was quantified by optical and scanning electron microscopy and correlated with fatigue life.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Experiments have been carried out to optimize the yields of carbon nanotubes obtained by the arc-evaporation of graphite. Other types of carbon particles such as nanocrystalline graphite usually present along with the nanotubes are readily removed by heating the material in oxygen around 763 K. Clean nanotubes so obtained have been characterized by X-ray diffraction. The clean tubes are thermally more stable than graphite or fullerenes. The tips of carbon nanotubes are opened by reaction with oxygen, but more interestingly, when the oxygen produced by the decomposition of a metal oxide is used to open the tube tips, the metal formed in the process enters the nanotube. Electrical resistance of pressed pellets of clean tubes is not unlike that of graphite. Tunnelling conductance measurements on isolated tubes characterized by means of scanning tunnelling microscopy however show that the conductance gap increases with decreasing tube diameter.