154 resultados para AMORPHOUS THIN FILM
Resumo:
The La0.6Pb0.4MnO3(LPMO) thin films were in situ deposited at different oxygen partial pressure and at a substrate temperature of 630 degrees C by pulsed laser deposition. The films grown at lower oxygen partial pressures showed an increase in lattice parameter and resistivity and a decrease in the insulator-metal transition temperature as compared to the stoichiometric LPMO thin film grown at 400 mTorr. Further, these oxygen-deficient thin films showed over 70% giant magnetoresistance (GMR) near the insulator-metal transition temperature against the 40% GMR in the case of stoichiometric thin films. (C) 1995 American Institute of Physics.
Resumo:
In recent times antiferroelectric thin-film material compositions have been identified as one of the most significant thin films for development of devices such as high charge storage, charge couplers/decouplers, and high strain microelectromechanical systems. Thus, understanding the dielectric and electrical properties under an ac signal drive in these antiferroelectric thin-film compositions, such as lead zirconate thin films, and the effect of donor doping on them is very necessary. For this purpose, thin films of antiferroelectric lead zirconate and La-modified lead zirconate thin films with mole % concentrations of 0, 3, 5, and 9 have been deposited by pulsed excimer laser ablation. The dielectric and hysteresis properties have confirmed that with a gradual increase of the La content, the room-temperature antiferroelectric lead zirconate thin films can be modified into ferroelectric and paraelectric phases. ac electrical studies revealed that the polaronic related hopping conduction is responsible for the charge transport phenomenon in these films. With a La content of less than or equal to3 mole % in pure lead zirconate, the conductivity of the films has been reduced and followed by an increase of its conductivity for a greater than or equal to3% addition of La to lead zirconate thin films. The polaronic activation energies are also found to follow a similar trend as that of the conductivity.
Resumo:
The reversible and irreversible components of the total polarization in a thin film of SrBi2(Ta-0.5,Nb-0.5)(2)O-9 were calculated. The C-V loop was integrated to obtain the reversible part of the total polarization. The reversible polarization was only 20% of the total polarization and showed almost no hysteresis. However, the dielectric constant due to the total polarization was almost the same as that for the reversible polarization in the saturation region of the large signal P-E hysteresis loop. The reversible part was subtracted from the total polarization to calculate the irreversible counterpart of it. The irreversible polarization showed a near-square shaped hysteresis loop, while the reversible polarization was obeying the Rayleigh law. The small signal hysteresis was simulated from the parameters obtained from the Rayleigh-curve fit with the experimental curve and then it was compared with the result obtained from direct measurement with small amplitude. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Nanoparticles thin films have wide range of applications such as nanoelectronics, magnetic storage devices, SERS substrate fabrication, optical grating and antireflective coating. Present work describes a method to prepare large area nanoparticles thin film of the order of few square centimeters. Thin film deposition has been done successfully on a wide range of conducting as well as non conducting substrates such as carbon-coated copper grid, silicon, m-plane of alumina, glass and (100) plane of NaCl single crystal. SEM, TEM and AFM studies have been done for microstructural characterization of the thin films. A basic mechanism has been proposed towards the understanding of the deposition process.
Effect of Nature of the Precursor on Crystallinity and Microstructure of MOCVD-Grown ZrO2 Thin Films
Resumo:
In the present work, we report the deposition of zirconia thin films on Si(100) at various substrate temperatures by low-pressure metalorganic chemical vapor deposition (MOCVD). Three different zirconium complexes, viz., tetrakis(2,4-pentadionato)zirconium(IV), [Zr(pd)4], tetrakis(2,2,6,6-tetramethyl-3,5-heptadionato)zirconium(IV), [Zr(thd)4], and tetrakis(t-butyl-3-oxo-butanoato)zirconium(IV), [Zr(tbob)4] are used as precursors. The relationship between the molecular structures of the precursors and their thermal properties, as examined by TG/DTA is presented. The films deposited using these precursors have distinctly different morphology, though all of them are of the cubic phase. The films grown from Zr(thd)4 are well crystallized, showing faceted growth at 575°C, whereas the films grown from Zr(pd)4 and Zr(tbob)4 are not well crystallized, and display cracks. These differences in the observed microstructure may be attributed to the different chemical decomposition pathways of the precursors during the film growth, which influence the nucleation and the growth processes. This is also evidenced by the different kinetics of growth from these three precursors under otherwise identical CVD conditions. The details of thin film deposition, and film microstructure analysis by XRD and SEM is presented. The dielectric behavior of the films deposited from different precursors, as studied by C-V measurements, are compared.
Resumo:
Novel, volatile, stable, oxo-β-ketoesterate complexes of titanium, whose synthesis requires only an inert atmosphere, as opposed to a glove box, have been developed. Using one of the complexes as the precursor, thin films of TiO2 have been deposited on glass substrates by metalorganic chemical vapor deposition (MOCVD) at temperatures ranging from 400°C to 525°C and characterized by scanning electron microscopy, transmission electron microscopy, and atomic force microscopy. All the films grown in this temperature range are very smooth; those grown above 480°C consist of nearly monodisperse, nanocrystals of the anatase phase. Optical studies show the bandgaps in the range 3.4–3.7 eV for films grown at different temperatures. Thin films of anatase TiO2 have also been grown by spin-coating technique using another ketoesterate complex of titanium, demonstrating that the newly developed complexes can be successfully used for thin film growth by various chemical routes.
Resumo:
Owing to their distinct properties, carbon nanotubes (CNTs) have emerged as promising candidate for field emission devices. It has been found experimentally that the results related to the field emission performance show variability. The design of an efficient field emitting device requires the analysis of the variabilities with a systematic and multiphysics based modeling approach. In this paper, we develop a model of randomly oriented CNTs in a thin film by coupling the field emission phenomena, the electron-phonon transport and the mechanics of single isolated CNT. A computational scheme is developed by which the states of CNTs are updated in time incremental manner. The device current is calculated by using Fowler-Nordheim equation for field emission to study the performance at the device scale.
Resumo:
The pulsed-laser ablation technique has been employed to deposit polycrystalline thin films of layered-structure ferroelectric BaBi2Nb2O9 (BBN). Low-substrate-temperature growth (Ts = 400 °C) followed by ex situ annealing at 800 °C for 30 min was performed to obtain a preferred orientation. Ferroelectricity in the films was verified by examining the polarization with the applied electric field and was also confirmed from the capacitance–voltage characteristics. The films exhibited well-defined hysteresis loops, and the values of saturation (Ps) and remanent (Pr) polarization were 4.0 and 1.2 μC/cm2, respectively. The room-temperature dielectric constant and dissipation factor were 214 and 0.04, respectively, at a frequency of 100 kHz. A phase transition from a ferroelectric to paraelectric state of the BBN thin film was observed at 220 °C. The dissipation factor of the film was observed to increase after the phase transition due to a probable influence of dc conduction at high temperatures. The real and imaginary part of the dielectric constant also exhibited strong frequency dispersion at high temperatures.
Resumo:
Antiferroelectric materials (example: lead zirconate and modified lead zirconate stannate), in which a field-induced ferroelectric phase transition is feasible due to a small free energy difference between the ferroelectric and the antiferroelectric phases, are proven to be very good candidates for applications involving actuation and high charge storage devices. The property of reverse switching from the field-induced ferroelectric to antiferroelectric phases is studied as a function of temperature, applied electric field, and sample thickness in antiferroelectric lead zirconate thin films deposited by pulsed excimer laser ablation. The maximum released charge density was 22 μC/cm2 from a stored charge density of 36 μC/cm2 in a 0.55 μ thick lead zirconate thin film. This indicated that more than 60% of the stored charge could be released in less than 7 ns at room temperature for a field of 200 kV/cm. The content of net released charge was found to increase with increasing field strength, whereas with increasing temperature the released charge was found to decrease. Thickness-dependent studies on lead zirconate thin films showed that size effects relating to extrinsic and intrinsic pinning mechanisms controlled the released and induced charges through the intrinsic switching time. These results proved that antiferroelectric PZ thin films could be utilized in high-speed charge decoupling capacitors in microelectronics applications.
Resumo:
We present a systematic study to explore the effect of important process variables on the composition and structure of niobium nitride thin films synthesized by Reactive Pulsed Laser Deposition (RPLD) technique through ablation of high purity niobium target in the presence of low pressure nitrogen gas. Secondary Ion Mass Spectrometry has been used in a unique way to study and fix gas pressure, substrate temperature and laser fluence, in order to obtain optimized conditions for one variable in single experimental run. The x-ray diffraction and electron microscopic characterization have been complemented by proton elastic backscattering spectroscopy and x-ray photoelectron spectroscopy to understand the incorporation of oxygen and associated non-stoichiometry in the metal to nitrogen ratio. The present study demonstrates that RPLD can be used for obtaining thin film architectures using non-equilibrium processing. Finally the optimized NbN thin films were characterized for their hardness using nano-indentation technique and found to be similar to 30 GPa at the deposition pressure of 8 Pa. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Thin films of Sb40Se20S40 with thickness 1000 nm were prepared by thermal evaporation technique. The amorphous nature of the thin films was verified by X-ray diffractometer. The chemical composition of the deposited thin films was examined by energy dispersive X-ray analysis (EDAX). The changes in optical properties due to the influence of laser radiation on amorphous thin films of Sb40Se20S40 glassy alloy were calculated from absorbance spectra as a function of photon energy in the wavelength region 450-900 nm. Analysis of the optical absorption data shows that the rule of non-direct transitions predominates. It has been observed that laser-irradiation of the films leads to a decrease in optical band gap while increase in absorption coefficient. The decrease in the optical band gap is explained on the basis of change in nature of films due to disorderness. The optical changes are supported by X-ray photoelectron spectroscopy and Raman spectroscopy. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
This study deals with tailoring of the surface morphology, microstructure, and electrochemical properties of Sn thin films deposited by magnetron sputtering with different deposition rates. Scanning electron microscopy and atomic force microscopy are used to characterize the film surface morphology. Electrochemical properties of Sn thin film are measured and compared by cyclic voltammetry and charge-discharge cycle data at a constant current density. Sn thin film fabricated with a higher deposition rate exhibited an initial discharge capacity of 798 mAh g(-1) but reduced to 94 mAh g(-1) at 30th cycle. Film deposited with lower deposition rate delivered 770 mAh g(-1) during 1st cycle with improved capacity retention of 521 mAh g(-1) on 30th cycle. Comparison of electrochemical performances of these films has revealed important distinctions, which are associated with the surface morphology and hence on rate of deposition. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
In this paper, we have carried out thin film characterization of poly(3,4-propylenedioxythiophene)-sultone (PProDOT-S), a derivative of electrochromic poly(3,4-propylenedioxythiophene) (PProDOT). PProDOT-S was deposited onto transparent conducting oxide coated glass substrates by solution casting method. Single wavelength spectrophotometry is used to monitor the switching speed and contrast ratio at maximum wavelength (lambda (max)). The percentage transmittance at the lambda (max) of the neutral polymer is monitored as a function of time when the polymer film is repeatedly switched. This experiment gives a quantitative measure of the speed with which a film is able to switch between the two states i.e. the coloured and the bleached states. PProDOT-S films were switched at a voltage of 1 center dot 9 V with a switching speed of 2 s at lambda (max) of 565 nm and showed a contrast of similar to 37%. Cyclic voltammetry performed at different scan rates have shown the characteristic anodic and cathodic peaks. The structural investigations of PProDOT-S films by IR spectra were in good agreement with previously reported results. Raman spectra of PProDOT-S showed a strong Raman peak at 1509 cm (-aEuro parts per thousand 1) and a weak peak at 1410 cm (-aEuro parts per thousand 1) due to the C = C asymmetric and symmetric stretching vibrations of thiophene rings. The morphological investigations carried out by using scanning electron microscope (SEM) of polymer films have shown that these polymers are found to be arranged in dense packed clusters with non-uniform distribution having an average width and length of 95 nm and 160 nm, respectively.
Resumo:
We report on the novel flow sensing application of piezoelectric ZnO thin film deposited on Phynox alloy sensing element. Characterization of piezoelectric ZnO films deposited on Phynox (Elgiloy) substrate at different RF powers is discussed. ZnO films deposited at RF power of 100W were found to have fine c-axis orientation, possesses excellent surface morphology with lower rms surface roughness of 1.87 nm and maximum d(31) coefficient value 4.7 pm V-1. The thin cantilever strip of Phynox alloy with ZnO film as a sensing layer for flow sensing has been tested for flow rates ranging from 2 to 18 L min(-1). A detailed theoretical analysis of the experimental set-up showing the relationship between output voltage and force at a particular flow rate has been discussed. The sensitivity of now sensing element is similar to 18 mV/(L min(-1)) and typical response time is of the order of 20 m s. The sensing element is calibrated using in-house developed testing set-up. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
We report, strong ultraviolet (UV) emission from ZnO nanoparticle thin film obtained by a green synthesis, where the film is formed by the microwave irradiation of the alcohol solution of the precursor. The deposition is carried out in non-aqueous medium without the use of any surfactant, and the film formation is quick (5 min). The film is uniform comprising of mono-disperse nanoparticles having a narrow size distribution (15-22 nm), and that cover over an entire area (625 mm(2)) of the substrate. The growth rate is comparatively high (30-70 nm/min). It is possible to tune the morphology of the films and the UV emission by varying the process parameters. The growth mechanism is discussed precisely and schematic of the growth process is provided.