130 resultados para 149-898
Resumo:
We affirmatively answer a question due to S. Bocherer concerning the feasibility of removing one differential operator from the standard collection of m + 1 of them used to embed the space of Jacobi forms of weight 2 and index m into several pieces of elliptic modular forms. (C) 2014 Elsevier Inc. All rights reserved.
Resumo:
We present deep Washington photometry of 45 poorly populated star cluster candidates in the Large Magellanic Cloud (LMC). We have performed a systematic study to estimate the parameters of the cluster candidates by matching theoretical isochrones to the cleaned and dereddened cluster color-magnitude diagrams. We were able to estimate the basic parameters for 33 clusters, out of which 23 are identified as single clusters and 10 are found to be members of double clusters. The other 12 cluster candidates have been classified as possible clusters/asterisms. About 50% of the true clusters are in the 100-300 Myr age range, whereas some are older or younger. We have discussed the distribution of age, location, and reddening with respect to field, as well as the size of true clusters. The sizes and masses of the studied sample are found to be similar to that of open clusters in the Milky Way. Our study adds to the lower end of cluster mass distribution in the LMC, suggesting that the LMC, apart from hosting rich clusters, also has formed small, less massive open clusters in the 100-300 Myr age range.
Resumo:
This paper presents a low energy memory decoder architecture for ultra-low-voltage systems containing multiple voltage domains. Due to limitations in scalability of memory supply voltages, these systems typically contain a core operating at subthreshold voltages and memories operating at a higher voltage. This difference in voltage provides a timing slack on the memory path as the core supply is scaled. The paper analyzes the feasibility and trade-offs in utilizing this timing slack to operate a greater section of memory decoder circuitry at the lower supply. A 256x16-bit SRAM interface has been designed in UMC 65nm low-leakage process to evaluate the above technique with the core and memory operating at 280 mV and 500 mV respectively. The technique provides a reduction of up to 20% in energy/cycle of the row decoder without any penalty in area and system-delay.
Resumo:
Rapid and high wing-beat frequencies achieved during insect flight are powered by the indirect flight muscles, the largest group of muscles present in the thorax. Any anomaly during the assembly and/or structural impairment of the indirect flight muscles gives rise to a flightless phenotype. Multiple mutagenesis screens in Drosophila melanogaster for defective flight behavior have led to the isolation and characterization of mutations that have been instrumental in the identification of many proteins and residues that are important for muscle assembly, function, and disease. In this article, we present a molecular-genetic characterization of a flightless mutation, flightless-H (fliH), originally designated as heldup-a (hdp-a). We show that fliH is a cis-regulatory mutation of the wings up A (wupA) gene, which codes for the troponin-I protein, one of the troponin complex proteins, involved in regulation of muscle contraction. The mutation leads to reduced levels of troponin-I transcript and protein. In addition to this, there is also coordinated reduction in transcript and protein levels of other structural protein isoforms that are part of the troponin complex. The altered transcript and protein stoichiometry ultimately culminates in unregulated acto-myosin interactions and a hypercontraction muscle phenotype. Our results shed new insights into the importance of maintaining the stoichiometry of structural proteins during muscle assembly for proper function with implications for the identification of mutations and disease phenotypes in other species, including humans.
Resumo:
MgO:Fe3+ (0.1-5 mol%) nanoparticles (NPs) were synthesized via eco-friendly, inexpensive and simple low temperature solution combustion route using Aloe vera gel as fuel. The final products were characterized by SEM, TEM and HRTEM. PXRD data and Rietveld analysis revealed the formation of cubic system. The influence of Fe3+ ion concentration on the structure morphology, UV absorption, PL emission and photocatalytic activity of MgO:Fe3+ NPs were investigated. The yellow emission with CIE chromaticity coordinates (0.44, 0.52) and average correlated color temperature value was found to be 3540 K which corresponds to warm light of NPs. The control of Fe3+. on MgO matrix influences the photocatalytic decolorization of methylene blue (MB) under UV light. The enhanced photocatalytic activity of MgO:Fe3+ (4 mol%) was attributed to dopant concentration, effective crystallite size, textural properties, decreased band gap and capability for reducing the electron hole pair recombination. Further, the trends of inhibitory effect in the presence of different radical scavengers were explored. These findings open up new avenues for the exploration of Fe-doped MgO in eco-friendly water applications and in the process of display devices. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
The ultimate bearing capacity of a circular footing, placed over rock mass, is evaluated by using the lower bound theorem of the limit analysis in conjunction with finite elements and nonlinear optimization. The generalized Hoek-Brown (HB) failure criterion, but by keeping a constant value of the exponent, alpha = 0.5, was used. The failure criterion was smoothened both in the meridian and pi planes. The nonlinear optimization was carried out by employing an interior point method based on the logarithmic barrier function. The results for the obtained bearing capacity were presented in a non-dimensional form for different values of GSI, m(i), sigma(ci)/(gamma b) and q/sigma(ci). Failure patterns were also examined for a few cases. For validating the results, computations were also performed for a strip footing as well. The results obtained from the analysis compare well with the data reported in literature. Since the equilibrium conditions are precisely satisfied only at the centroids of the elements, not everywhere in the domain, the obtained lower bound solution will be approximate not true. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
The current study analysed how the climbing perch Anabas testudineus an air-breathing freshwater fish make choice when a pair of food patches differing in the gain is presented. The results revealed no significant variation in the preference towards the patch of food material cumulated in one place over the same amount of food dispersed in a wider area and located at an equal distance. Additionally, enhancement of the value of dispersed or cumulated patch, by moving it towards the subject fish (spatial discounting) was also found to be ineffective in influencing the food patch utilisation in this species.
Resumo:
We study a positivity condition for the curvature of oriented Riemannian 4-manifolds: the half-PIC condition. It is a slight weakening of the positive isotropic curvature (PIC) condition introduced by M. Micallef and J. Moore. We observe that the half-PIC condition is preserved by the Ricci flow and satisfies a maximality property among all Ricci flow invariant positivity conditions on the curvature of oriented 4-manifolds. We also study some geometric and topological aspects of half-PIC manifolds.
Resumo:
Gadolinium oxide (Gd2O3) nanotubes of micron length and average diameter 100 nm have been synthesized by a controlled template-assisted electrochemical deposition technique. Structure and morphology of the synthesized nanotubes have been well characterized by using microscopy and spectroscopy analyses. HRTEM and XRD analysis revealed the crystalline planes of Gd2O3 nanotubes. Magnetic measurements of the aligned Gd2O3 nanotubes have been performed for both parallel and perpendicular orientations of the magnetic field with respect to the axis of the Gd2O3 nanotube array. Large bifurcation in ZFC-FC over the regime of 2-320 K without any signature of long range magnetic ordering confirms the presence of SPM clusters in Gd2O3 nanotubes. Also, large magnetocaloric effect is observed in the cryogenic temperature regime. No anisotropy is seen at the low temperature region but is found to evolve with temperature and becomes significant 300 K. These nanotubes can be considered as promising candidates for magnetic refrigeration at cryogenic temperature. (C) 2016 Elsevier B.V. All rights reserved.
Resumo:
Significant research has been pursued to develop solar selective metallic coatings using a variety of coating deposition techniques, with limited attempts to assess the properties of bulk metallic materials for solar energy applications. In developing bulk solar reflectors with good reflectance in the entire solar range, we report a new class of reflector materials based on Cu-Sn intermetallics with tailored substitution of aluminium or zinc. Our experimental results suggest that the arc melted-suction cast Cu (78.8 at%)-Al (21.2 at%) alloy with nanoscale surface roughness can exhibit a combination of 89% bulk specular reflectance and 83% bulk solar reflectance, together with a hardness of 2 GPa. We show that the present alloy design approach paves the way for further opportunities of tuning the spectral properties of this new class of solar reflector material. (C) 2016 Elsevier B.V. All rights reserved.