227 resultados para scattering noise
Resumo:
In the past few years there have been attempts to develop subspace methods for DoA (direction of arrival) estimation using a fourth?order cumulant which is known to de?emphasize Gaussian background noise. To gauge the relative performance of the cumulant MUSIC (MUltiple SIgnal Classification) (c?MUSIC) and the standard MUSIC, based on the covariance function, an extensive numerical study has been carried out, where a narrow?band signal source has been considered and Gaussian noise sources, which produce a spatially correlated background noise, have been distributed. These simulations indicate that, even though the cumulant approach is capable of de?emphasizing the Gaussian noise, both bias and variance of the DoA estimates are higher than those for MUSIC. To achieve comparable results the cumulant approach requires much larger data, three to ten times that for MUSIC, depending upon the number of sources and how close they are. This is attributed to the fact that in the estimation of the cumulant, an average of a product of four random variables is needed to make an evaluation. Therefore, compared to those in the evaluation of the covariance function, there are more cross terms which do not go to zero unless the data length is very large. It is felt that these cross terms contribute to the large bias and variance observed in c?MUSIC. However, the ability to de?emphasize Gaussian noise, white or colored, is of great significance since the standard MUSIC fails when there is colored background noise. Through simulation it is shown that c?MUSIC does yield good results, but only at the cost of more data.
Resumo:
A Comment on the Letter by C. Van den Broeck, J. M. R. Parrondo, and R. Toral, Phys. Rev. Lett. 73, 3395 (1994). The authors of the Letter offer a Reply.
Resumo:
One of the main disturbances in EEG signals is EMG artefacts generated by muscle movements. In the paper, the use of a linear phase FIR digital low-pass filter with finite wordlength precision coefficients is proposed, designed using the compensation procedure, to minimise EMG artefacts in contaminated EEG signals. To make the filtering more effective, different structures are used, i.e. cascading, twicing and sharpening (apart from simple low-pass filtering) of the designed FIR filter Modifications are proposed to twicing and sharpening structures to regain the linear phase characteristics that are lost in conventional twicing and sharpening operations. The efficacy of all these transformed filters in minimising EMG artefacts is studied, using SNR improvements as a performance measure for simulated signals. Time plots of the signals are also compared. Studies show that the modified sharpening structure is superior in performance to all other proposed methods. These algorithms have also been applied to real or recorded EMG-contaminated EEG signal. Comparison of time plots, and also the output SNR, show that the proposed modified sharpened structure works better in minimising EMG artefacts compared with other methods considered.
Resumo:
Realizing the importance of aerosol characterization and addressing its spatio-temporal heterogeneities over Bay of Bengal (BoB), campaign mode observations of aerosol parameters were carried out using simultaneous cruise, aircraft and land-based measurements during the Winter Integrated Campaign for Aerosols gases and Radiation Budget (W_ICARB). Under this, airborne measurements of total and hemispheric backscatter coefficients were made over several regions of coastal India and eastern BoB using a three wavelength integrating nephelometer. The measurements include high resolution multi-level (ML) sorties for altitude profiles and bi-level (BL) sorties for spatial gradients within and above the Marine Atmospheric Boundary Layer (MABL) over BoB. The vertical profiles of the scattering coefficients are investigated in light of the information on the vertical structure of the atmospheric stability, which was derived from the collocated GPS (Global Positioning System) aided radiosonde ascents. In general, the altitude profiles revealed that the scattering coefficient remained steady in the convectively well-mixed regions and dropped off above the MABL. This decrease was quite rapid off the Indian mainland, while it was more gradual in the eastern BoB. Investigation on horizontal gradients revealed that the scattering coefficients over northern BoB are 3 to 4 times higher compared to that of central BoB within and above the MABL. A north-south gradient in scattering coefficients is observed over Port Blair in the eastern BoB, with values decreasing from south to north, which is attributed to the similar gradient in the surface wind speed, which can be replicated in the sea salt abundance. The gradients are parameterized using best-fit analytical functions.
Resumo:
Measurements of small-angle neutron scattering (SANS) cross sections from different mixed micelles composed of CTAB and Br-, n-C16H33N+Me2-(CH2)(m)N+Me2-n-C16H33, Br- (16-m-16, 2Br(-), where m = 3, 5, and 10), in aqueous media (D2O) are reported. The data have been analyzed using the Hayter and Penfold model for macroion solution to compute the interparticle structure factor S(Q) taking into account the screened Coulomb interactions between the micelles. The aggregate composition matches with that predicted from an ideal mixing model. The SANS analysis further indicates that the extent of aggregate growth and the Variations of shapes of the mixed micelles could be modulated by the amount of dimeric surfactant present in these mixtures. With the spacer chain length m less than or equal to 4 in the dimeric surfactant, the propensity of micellar growth is particularly pronounced. The effect of the variation of the temperature for the mixed micellar system (23.1 mol % of 16-3-16, 2Br(-)) was also examined. The systemic microviscosities that the mixed micellar aggregates offer to a solubilized, extrinsic fluorescence probe, 1,6-diphenyl-1,3,5-hexatriene, were determined. The variation of the microviscosities of the mixed micelles as a function of percentages of the dimeric surfactants could be explained in terms of conformational variations and progressive looping of the spacer chain of dimeric surfactants in mixed micellar aggregates with increasing m values.
Resumo:
The anomalous X-ray scattering (AXS) method using Mo K absorption edges has been employed for obtaining the local structural information of superionic conducting glass having the composition (AgI)(0.6)(Ag2MoO4)(0.4). The possible atomic arrangements in the near-neighbor region of this glass were estimated by coupling the results with the least-squares variational analysis so as to reproduce the differential intensity profile for Mo as well as the ordinary scattering profile. The coordination number of oxygen around Mo is found to be about 4 at the distance of 0.180 mn. This implies that the most probable structural entity in the glass is the MoO4 tetrahedral unit which has been proposed based on infrared spectroscopy. The value of the coordination number of I- around Ag+ is estimated as 4.4 at 0.287 nm, suggesting an arrangement similar to that of crystalline or molten AgI.
Resumo:
Dimeric or gemini surfactants consist of two hydrophobic chains and two hydrophilic head groups covalently connected by a hydrophobic or hydrophilic spacer. This paper reports the small-angle neutron scattering (SANS) measurements from aqueous micellar solutions of two different recently developed types of dimeric surfactants: (i) bis-anionic C16H33PO4--(CH2)(m)-PO4-C16H33,2Na(+) dimeric surfactants composed of phosphate head groups and a hydrophobic polymethylene spacer, referred to as 16-m-16,2Na(+), for spacer lengths m = 2, 4, 6, and 10, (ii) bis-cationic C16H33N+(CH3)(2)-CH2-(CH2-O-CH2)(p)-CH2-N+ (CH3)(2)C16H33,2Br(-) dimeric surfactants composed of dimethylammonium head groups and a wettable polyethylene oxide spacer, referred to as 16-CH2-p-CH2-16,2Br(-), for spacer lengths p = 1 - 3. The micellar structures of these surfactants are compared with the earlier studied bis-cationic C16H33N+ (CH3)(2)-(CH2)(m)-N+ (CH3)(2)C16H33,2Br(-) dimeric surfactants composed of dimethylammonium head groups and a hydrophobic polymethylene spacer, referred to as 16-m-16,2Br(-). It is found that 16-m-16,2Na(+), similar to 16-m-16,2Br(-), form various micellar structures depending on the spacer length. Micelles an disklike for rn = 2, rodlike for m = 4, and prolate ellipsoidal fur m = 6 and 10. The micelles of 16-CH2-p-CH2-16,2Br(-) are prolate ellipsoidal for all the values of p = 1 - 3. It is also found that micelles of 16-m-16,2Na(+) and 16-CH2-p-CH2-16,2Br(-) are large in comparison to those of 16-in-16,2Br(-) for similar spacer lengths. This is connected with the fact that both in 16-m-16,2Na(+) and 16-CH2-p-CH2-16,2Br(-), the head group or the spacer is more hydrated as compared to that in the 16-m-16,2Br(-). An increase in the hydration of the spacer or the head group increases the screening of the Coulomb repulsion between the charged head groups. This effect has been found to be more pronounced in the dimeric surfactants having wettable spacers. [S1063-651X(99)00303-7].
Resumo:
Measurements of the dc transport properties and the low-frequency conductivity noise in films of charge-ordered Nd0.5Ca0.5MnO3 grown on Si substrate reveal the existence of a threshold field in the charge-ordered regime beyond which strong nonlinear conduction sets in along with a large broad band conductivity noise. Threshold-dependent conduction disappears as T --> T-CO, the charge-ordering temperature. This observation suggests that the charge-ordered state gets depinned at the onset of the nonlinear conduction. (C) 1999 American Institute of Physics. [S0003-6951(99)05247-X].
Resumo:
Two methods based on wavelet/wavelet packet expansion to denoise and compress optical tomography data containing scattered noise are presented, In the first, the wavelet expansion coefficients of noisy data are shrunk using a soft threshold. In the second, the data are expanded into a wavelet packet tree upon which a best basis search is done. The resulting coefficients are truncated on the basis of energy content. It can be seen that the first method results in efficient denoising of experimental data when scattering particle density in the medium surrounding the object was up to 12.0 x 10(6) per cm(3). This method achieves a compression ratio of approximate to 8:1. The wavelet packet based method resulted in a compression of up to 11:1 and also exhibited reasonable noise reduction capability. Tomographic reconstructions obtained from denoised data are presented. (C) 1999 Published by Elsevier Science B.V. All rights reserved,
Resumo:
High sensitivity detection techniques are required for indoor navigation using Global Navigation Satellite System (GNSS) receivers, and typically, a combination of coherent and non- coherent integration is used as the test statistic for detection. The coherent integration exploits the deterministic part of the signal and is limited due to the residual frequency error, navigation data bits and user dynamics, which are not known apriori. So, non- coherent integration, which involves squaring of the coherent integration output, is used to improve the detection sensitivity. Due to this squaring, it is robust against the artifacts introduced due to data bits and/or frequency error. However, it is susceptible to uncertainty in the noise variance, and this can lead to fundamental sensitivity limits in detecting weak signals. In this work, the performance of the conventional non-coherent integration-based GNSS signal detection is studied in the presence of noise uncertainty. It is shown that the performance of the current state of the art GNSS receivers is close to the theoretical SNR limit for reliable detection at moderate levels of noise uncertainty. Alternate robust post-coherent detectors are also analyzed, and are shown to alleviate the noise uncertainty problem. Monte-Carlo simulations are used to confirm the theoretical predictions.
Resumo:
We report low-frequency 1/f-noise measurements of degenerately doped Si:P delta layers at 4.2 K. The noise was found to be over six orders of magnitude lower than that of bulk Si:P systems in the metallic regime and is one of the lowest values reported for doped semiconductors. The noise was nearly independent of magnetic field at low fields, indicating negligible contribution from universal conductance fluctuations. Instead, the interaction of electrons with very few active structural two-level systems may explain the observed noise magnitude.
Resumo:
This is a review of the measurement of I If noise in certain classes of materials which have a wide range of potential applications. This includes metal films, semi-conductors, metallic oxides and inhomogeneous systems such as composites. The review contains a basic introduction to this field, the theories and models and follows it up with a discussion on measurement methods. There are discussions on specific examples of the application of noise spectroscopy in the field of materials science. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
The removal of noise and outliers from measurement signals is a major problem in jet engine health monitoring. Topical measurement signals found in most jet engines include low rotor speed, high rotor speed. fuel flow and exhaust gas temperature. Deviations in these measurements from a baseline 'good' engine are often called measurement deltas and the health signals used for fault detection, isolation, trending and data mining. Linear filters such as the FIR moving average filter and IIR exponential average filter are used in the industry to remove noise and outliers from the jet engine measurement deltas. However, the use of linear filters can lead to loss of critical features in the signal that can contain information about maintenance and repair events that could be used by fault isolation algorithms to determine engine condition or by data mining algorithms to learn valuable patterns in the data, Non-linear filters such as the median and weighted median hybrid filters offer the opportunity to remove noise and gross outliers from signals while preserving features. In this study. a comparison of traditional linear filters popular in the jet engine industry is made with the median filter and the subfilter weighted FIR median hybrid (SWFMH) filter. Results using simulated data with implanted faults shows that the SWFMH filter results in a noise reduction of over 60 per cent compared to only 20 per cent for FIR filters and 30 per cent for IIR filters. Preprocessing jet engine health signals using the SWFMH filter would greatly improve the accuracy of diagnostic systems. (C) 2002 Published by Elsevier Science Ltd.
Resumo:
We analyse the Roy equations for the lowest partial waves of elastic ππ scattering. In the first part of the paper, we review the mathematical properties of these equations as well as their phenomenological applications. In particular, the experimental situation concerning the contributions from intermediate energies and the evaluation of the driving terms are discussed in detail. We then demonstrate that the two S-wave scattering lengths a00 and a02 are the essential parameters in the low energy region: Once these are known, the available experimental information determines the behaviour near threshold to within remarkably small uncertainties. An explicit numerical representation for the energy dependence of the S- and P-waves is given and it is shown that the threshold parameters of the D- and F-waves are also fixed very sharply in terms of a00 and a20. In agreement with earlier work, which is reviewed in some detail, we find that the Roy equations admit physically acceptable solutions only within a band of the (a00,a02) plane. We show that the data on the reactions e+e−→ππ and τ→ππν reduce the width of this band quite significantly. Furthermore, we discuss the relevance of the decay K→ππeν in restricting the allowed range of a00, preparing the grounds for an analysis of the forthcoming precision data on this decay and on pionic atoms. We expect these to reduce the uncertainties in the two basic low energy parameters very substantially, so that a meaningful test of the chiral perturbation theory predictions will become possible.
Resumo:
Detailed small angle neutron scattering ( SANS) studies were carried out with the aqueous vesicular (unilamellar) suspension of dimeric ion-paired lipids (2a-2c) for spacer lengths corresponding to n-values of 2, 6 and 10 and monomeric ion-paired lipid (3) below and above the phase transition temperature of each amphiphile. The vesicular structure strongly depends on the spacer chain length. The mean vesicle size is smallest for the lipid with a short spacer, n = 3 and it increases with the increase in the spacer chain length. The bilayer thickness also decreases with the increase in the spacer chain length. The size polydispersity increases with the increase in the spacer chain length (n-value).