409 resultados para quantum double rings
Resumo:
Sr2FeMoO6 double perovskits display low field MR at a relatively high temperature and unusual ferromagnetic properties. These compounds depicts metal to insulator transition increasing x above x(c) similar to 0.25. A comparative analysis of the near edge regions (XANES) suggests that iron is Fe3+ in the metallic range. Checking the end compounds, we found that the doped samples can be viewn as inhomogeneous distributions of the end compounds. This could help to distinguish between the two scenarios proposed to explain the metal to insulator transition. Moreover, the local atomic structure of Sr2FeMoxW1-xO6 as a function of composition (0 <= x <= 1) has been investigated by Extended X-ray absorption spectroscopy (EXAFS) a the Fe, Mo, Sr K-edges andW L-III-edge.
Resumo:
A direct observation of ferroelectric domains in x-irradiated KH2AsO4 and KD2AsO4 using electron paramagnetic resonance (EPR), and in the case of KH2AsO4 also using electron-nuclear double-resonance (ENDOR), is reported. The nature of the observed domain splittings and consequently the effects of an externally applied electric field on the EPR and ENDOR spectra are explained. Moreover, the higher resolution possible with the ENDOR technique, has, for the first time, made it possible to use protons as microscopic probes and to identify in general lines from individual domains in all directions.
Resumo:
In this paper, an attempt is made to study the influence of external light waves on the thermoelectric power under strong magnetic field (TPSM) in ultrathin films (UFs), quantum wires (QWs) and quantum dots (QDs) of optoelectronic materials whose unperturbed dispersion relation of the conduction electrons are defined by three and two band models of Kane together with parabolic energy bands on the basis of newly formulated electron dispersion laws in each case. We have plotted the TPSM as functions of film thickness, electron concentration, light intensity and wavelength for UFs, QWs and ODs of InSb, GaAs, Hg1-xCdxTe and In1-xGaxAsyP1-y respectively. It appears from the figures that for UFs, the TPSM increases with increasing thickness in quantum steps, decreases with increasing electron degeneracy exhibiting entirely different types of oscillations and changes with both light intensity and wavelength and these two latter types of plots are the direct signature of light waves on opto-TPSM. For QWs, the opto-TPSM exhibits rectangular oscillations with increasing thickness and shows enhanced spiky oscillations with electron concentration per unit length. For QDs, the opto-TPSM increases with increasing film thickness exhibiting trapezoidal variations which occurs during quantum jumps and the length and breadth of the trapezoids are totally dependent on energy band constants. Under the condition of non-degeneracy, the results of opto-TPSM gets simplified into the well-known form of classical TPSM equation which the function of three constants only and being invariant of the signature of band structure.
Resumo:
Raman spectra of single crystals of (NH4)2M(SO4)2·6 H2O where M=Mg, Zn Ni or Co have been recorded using λ 2537 excitation. Interesting results concerning the substitution of the divalent atoms in the double sulphate lattice on the sulphate and ammonium frequencies are observed. The spectra of these double sulphates are discussed in the light of the known crystal structure details and in relation, to the spectra of the corresponding potassium double sulphates, reported recently by the author. The Raman spectrum of NaNH4SO4·2 H2O has also been recorded for the first time and the results obtained are also included.
Resumo:
Following the path-integral approach we show that the Schwarz-Hora effect is a one-electron quantum-mechanical phenomenon in that the de Broglie wave associated with a single electron is modulated by the oscillating electric field. The treatment brings out the crucial role played by the crystal in providing a discontinuity in the longitudinal component of the electric field. The expression derived for the resulting current density shows the appropriate oscillatory behaviour in time and distance. The possibility of there being a temporal counterpart of Aharonov-Bohm effect is briefly discussed in this context.
Resumo:
Following Weisskopf, the kinematics of quantum mechanics is shown to lead to a modified charge distribution for a test electron embedded in the Fermi-Dirac vacuum with interesting consequences.
Resumo:
Raman spectra of single crystals of K2M(SO4)2 · 6 H2O where M=Mg, Zn, Ni or Co have been recorded for the first time using λ 2537 as the exciting radiation. The corresponding five single sulphates have also been studied. Interesting results concerning the substitution of magnesium, zinc, nickel or cobalt in the double sulphate lattice on the sulphate frequencies are observed. The lattice spectra of these double sulphates are analysed group theoretically and discussed in relation to the lattice spectra of the corresponding individual sulphates. Certain new results concerning the Raman spectra of the individual sulphates have also been obtained and in the case of CoSO4 · 7 H2O the spectrum has been recorded for the first time.
Resumo:
Previous techniques used for solving the 1-D Poisson equation ( PE) rigorously for long-channel asymmetric and independent double-gate (IDG) transistors result in potential models that involve multiple intercoupled implicit equations. As these equations need to be solved self-consistently, such potential models are clearly inefficient for compact modeling. This paper reports a different rigorous technique for solving the same PE by which one can obtain the potential profile of a generalized IDG transistor that involves a single implicit equation. The proposed Poisson solution is shown to be computationally more efficient for circuit simulation than the previous solutions.
Resumo:
Some very simple, compact optical systems for holography of diffusely reflecting objects, using off-axis, double-focus elements as beam splitters, are described. These are free from disadvantages inherent in earlier systems of this type.
Resumo:
he growth of high-performance application in computer graphics, signal processing and scientific computing is a key driver for high performance, fixed latency; pipelined floating point dividers. Solutions available in the literature use large lookup table for double precision floating point operations.In this paper, we propose a cost effective, fixed latency pipelined divider using modified Taylor-series expansion for double precision floating point operations. We reduce chip area by using a smaller lookup table. We show that the latency of the proposed divider is 49.4 times the latency of a full-adder. The proposed divider reduces chip area by about 81% than the pipelined divider in [9] which is based on modified Taylor-series.
Resumo:
We derive the thermal correlators for twisted quantum fields on noncommutative spacetime. We show that the thermal expectation value of the number operator is same as in commutative spacetime, but that higher correlators are sensitive to the noncommutativity parameters phi(mu nu).
Resumo:
We present a generalized adaptive time-dependent density matrix renormalization-group (DMRG) scheme, called the double time window targeting (DTWT) technique, which gives accurate results with nominal computational resources, within reasonable computational time. This procedure originates from the amalgamation of the features of pace keeping DMRG algorithm, first proposed by Luo et al. [Phys. Rev. Lett. 91, 049701 (2003)] and the time-step targeting algorithm by Feiguin and White [Phys. Rev. B 72, 020404 (2005)]. Using the DTWT technique, we study the phenomena of spin-charge separation in conjugated polymers (materials for molecular electronics an spintronics), which have long-range electron-electron interactions and belong to the class of strongly correlated low-dimensional many-body systems. The issue of real-time dynamics within the Pariser-Parr-Pople (PPP) model which includes long-range electron correlations has not been addressed in the literature so far. The present study on PPP chains has revealed that, (i) long-range electron correlations enable both the charge and spin degree of freedom of the electron, to propagate faster in the PPP model compared to Hubbard model, (ii) for standard parameters of the PPP model as applied to conjugated polymers, the charge velocity is almost twice that of the spin velocity, and (iii) the simplistic interpretation of long-range correlations by merely renormalizing the U value of the Hubbard model fails to explain the dynamics of doped holes/electrons in the PPP model.
Resumo:
The unsteady laminar free convection flow of an incompressible electrically conducting fluid over two-dimensional and axisymmetric bodies embedded in a highly porous medium with an applied magnetic field has been studied. The unsteadiness in the flow field is caused by the variation of the wall temperature and concentration with time. The coupled nonlinear partial differential equations with three independent variables have been solved numerically using an implicit finite-difference scheme in combination with the quasilinearization technique. It is observed that the skin friction, heat transfer and mass transfer increase with the permeability parameter but decrease with the magnetic parameter. The results are strongly dependent on the variation of wall temperature and concentration with time. The skin friction and heat transfer increase or decrease as the buoyancy forces from species diffusion assist or oppose the thermal buoyancy force. However, the mass transfer is found to be higher for small values of the ratio of the buoyancy parameters than for large values
Resumo:
It is well known that n-length stabilizer quantum error correcting codes (QECCs) can be obtained via n-length classical error correction codes (CECCs) over GF(4), that are additive and self-orthogonal with respect to the trace Hermitian inner product. But, most of the CECCs have been studied with respect to the Euclidean inner product. In this paper, it is shown that n-length stabilizer QECCs can be constructed via 371 length linear CECCs over GF(2) that are self-orthogonal with respect to the Euclidean inner product. This facilitates usage of the widely studied self-orthogonal CECCs to construct stabilizer QECCs. Moreover, classical, binary, self-orthogonal cyclic codes have been used to obtain stabilizer QECCs with guaranteed quantum error correcting capability. This is facilitated by the fact that (i) self-orthogonal, binary cyclic codes are easily identified using transform approach and (ii) for such codes lower bounds on the minimum Hamming distance are known. Several explicit codes are constructed including two pure MDS QECCs.