132 resultados para pharmacokinetic parameters
Resumo:
The delineation of seismic source zones plays an important role in the evaluation of seismic hazard. In most of the studies the seismic source delineation is done based on geological features. In the present study, an attempt has been made to delineate seismic source zones in the study area (south India) based on the seismicity parameters. Seismicity parameters and the maximum probable earthquake for these source zones were evaluated and were used in the hazard evaluation. The probabilistic evaluation of seismic hazard for south India was carried out using a logic tree approach. Two different types of seismic sources, linear and areal, were considered in the present study to model the seismic sources in the region more precisely. In order to properly account for the attenuation characteristics of the region, three different attenuation relations were used with different weightage factors. Seismic hazard evaluation was done for the probability of exceedance (PE) of 10% and 2% in 50 years. The spatial variation of rock level peak horizontal acceleration (PHA) and spectral acceleration (Sa) values corresponding to return periods of 475 and 2500 years for the entire study area are presented in this work. The peak ground acceleration (PGA) values at ground surface level were estimated based on different NEHRP site classes by considering local site effects.
Resumo:
This paper illustrates a Wavelet Coefficient based approach using experiments to understand the sensitivity of ultrasonic signals due to parametric variation of a crack configuration in a metal plate. A PZT patch sensor/actuator system integrated to a metal plate with through-thickness crack is used. The proposed approach uses piezoelectric patches, which can be used to both actuate and sense the ultrasonic signals. While this approach leads to more flexibility and reduced cost for larger scalability of the sensor/actuator network, the complexity of the signals increases as compared to what is encountered in conventional ultrasonic NDE problems using selective wave modes. A Damage Index (DI) has been introduced, which is function of wavelet coefficient. Experiments have been carried out for various crack sizes, crack orientations and band-limited tone-burst signal through FIR filter. For a 1 cm long crack interrogated with 20 kHz tone-burst signal, the Damage Index (DI) for the horizontal crack orientation increases by about 70% with respect to that for 135 degrees oriented crack and it increases by about 33% with respect to the vertically oriented crack. The detailed results reported in this paper is a step forward to developing computational schemes for parametric identification of damage using sensor/actuator network and ultrasonic wave.
Resumo:
Important diffusion parameters, such as-parabolic growth constant, integrated diffusivity, ratio of intrinsic diffusivities of species Ni and Sn, Kirkendall marker velocity and the activation energy for diffusion kinetics of binary Ni3Sn4 phase have been investigated with the help of incremental diffusion couple technique (Sn/Ni0.57Sn0.43) in the temperature range 200-150 degrees C. Low activation energy extracted from Arrhenius plot indicates grain boundary controlled diffusion process. The species Sn is three times faster than Ni at 200 degrees C. Further, the activation energy of Sn tracer diffusivity is greater than that of Ni.
Resumo:
Many fishes are exposed to air in their natural habitat or during their commercial handling. In natural habitat or during commercial handling, the cat fish Heteropneustes fossilis is exposed to air for > 24 h. Data on its oxidative metabolism in the above condition are not available. Oxidative stress (OS) indices (lipid and protein oxidation), toxic reactive oxygen species (ROS: H2O2) generation, antioxidative status (levels of superoxide dismutase, catalase, glutathione peroxidase and reductase, ascorbic acid and nonprotein sulfhydryl) and activities of electron transport chain (ETC) enzymes (complex I-IV) were investigated in brain tissue of H. fossilis under air exposure condition (0, 3, 6, 12 and 18 h at 25 degrees C). Decreased activities of antioxidant (except catalase) and ETC enzymes (except complex II) with increased H2O2 and OS levels were observed in the tissue under water deprivation condition. Positive correlation was observed for complex II activity and non-protein thiol groups with time period of air exposure. The critical time period to induce OS and to reduce most of the studied antioxidant level in brain was found to be 3-6 h air exposure. The data can be useful to minimize the stress generated during commercial handling of the live fishes those exposed to air in general and H. fossilis in particular. (C) 2013 Elsevier Inc. All rights reserved.
Resumo:
Thermoacoustics is the interaction between heat and sound, which are useful in designing heat engines and heat pumps. Research in the field of thermoacoustics focuses on the demand to improve the performance which is achieved by altering operational, geometrical and fluid parameters. The present study deals with improving the performance of twin thermoacoustic prime mover, which has gained the significant importance in the recent years for the production of high amplitude sound waves. The performance of twin thermoacoustic prime mover is evaluated in terms of onset temperature difference, resonance frequency and pressure amplitude of the acoustic waves by varying the resonator length and charge pressures of fluid medium nitrogen. DeltaEC, the free simulation software developed by LANL, USA is employed in the present study to simulate the performance of twin thermoacoustic prime mover. Experimental and simulated results are compared and the deviation is found to be within 10%.
Resumo:
Recent data from high-statistics experiments that have measured the modulus of the pion electromagnetic form factor from threshold to relatively high energies are used as input in a suitable mathematical framework of analytic continuation to find stringent constraints on the shape parameters of the form factor at t = 0. The method uses also as input a precise description of the phase of the form factor in the elastic region based on Fermi-Watson theorem and the analysis of the pi pi scattering amplitude with dispersive Roy equations, and some information on the spacelike region coming from recent high precision experiments. Our analysis confirms the inconsistencies of several data on the modulus, especially from low energies, with analyticity and the input phase, noted in our earlier work. Using the data on the modulus from energies above 0.65 GeV, we obtain, with no specific parametrisation, the prediction < r(pi)(2)> is an element of (0.42, 0.44) fm(2) for the charge radius. The same formalism leads also to very narrow allowed ranges for the higher-order shape parameters at t = 0, with a strong correlation among them.
Resumo:
Electrical switching studies on amorphous Si15Te74Ge11 thin film devices show interesting changes in the switching behavior with changes in the input energy supplied; the input energy determines the extent of crystallization in the active volume, which is reflected in the value of SET resistances. This in turn, determines the trend exhibited by switching voltage (V-t) for different input conditions. The results obtained are analyzed on the basis of the amount of Joule heat generated, which determines the temperature of the active volume. Depending on the final temperature, devices are rendered either in the intermediate state with a resistance of 5*10(2) Omega or the ON state with a resistance of 5*10(1) Omega. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
Sildenafil is a drug used to treat erectile dysfunction and pulmonary arterial hypertension. Because of poor aqueous solubility of the drug, the citrate salt, with improved solubility and pharmacokinetics, has been marketed. However, the citrate salt requires an hour to reach its peak plasma concentration. Thus, to improve solubility and bioavailability characteristics, cocrystals and salts of the drug have been prepared by treating aliphatic dicarboxylic acids with sildenafil; the N-methylated piperazine of the drug molecule interacts with the carboxyl group of the acid to form a heterosynthon. Salts are formed with oxalic and fumaric acid; salt monoanions are formed with succinic and glutaric acid. Sildenafil forms cocrystals with longer chain dicarboxylic acids such as adipic, pimelic, suberic, and sebacic acids. Auxiliary stabilization via C-H center dot center dot center dot O interactions is also present in these cocrystals and salts. Solubility experiments of sildenafil cocrystal/salts were carried out in 0.1N HCl aqueous medium and compared with the solubility of the citrate salt. The glutarate salt and pimelic acid cocrystal dissolve faster than the citrate salt in a two hour dissolution experiment. The glutarate salt exhibits improved solubility (3.2-fold) compared to the citrate salt in water. Solubilities of the binary salts follow an inverse correlation with their melting points, while the solubilities of the cocrystals follow solubilities of the coformer. Pharmacokinetic studies on rats showed that the glutarate salt exhibits doubled plasma AUC values in a single dose within an hour compared to the citrate salt. The high solubility of glutaric acid, in part originating from the strained conformation of the molecule and its high permeability, may be the reason for higher plasma levels of the drug.
Resumo:
The multi-component nanomaterials combine the individual properties and give rise to emergent phenomenon. Optical excitations in such hybrid nonmaterial's ( for example Exciton in semiconductor quantum dots and Plasmon in Metal nanomaterials) undergo strong weak electromagnetic coupling. Such exciton-plasmon interactions allow design of absorption and emission properties, control of nanoscale energy-transfer processes, and creation of new excitations in the strong coupling regime.This Exciton plasmon interaction in hybrid nanomaterial can lead to both enhancement in the emission as well as quenching. In this work we prepared close-packed hybrid monolayer of thiol capped CdSe and gold nanoparticles. They exhibit both the Quenching and enhancements the in PL emission.The systematic variance of PL from such hybrid nanomaterials monolayer is studied by tuning the Number ratio of Gold per Quantum dots, the surface density of QDs and the spectral overlap of emission spectrum of QD and absorption spectrum of Gold nanoparticles. Role of Localized surface Plasmon which not only leads to quenching but strong enhancements as well, is explored.
Resumo:
An attempt has been made to quantify the variability in the seismic activity rate across the whole of India and adjoining areas (0–45°N and 60–105°E) using earthquake database compiled from various sources. Both historical and instrumental data were compiled and the complete catalog of Indian earthquakes till 2010 has been prepared. Region-specific earthquake magnitude scaling relations correlating different magnitude scales were achieved to develop a homogenous earthquake catalog for the region in unified moment magnitude scale. The dependent events (75.3%) in the raw catalog have been removed and the effect of aftershocks on the variation of b value has been quantified. The study area was divided into 2,025 grid points (1°91°) and the spatial variation of the seismicity across the region have been analyzed considering all the events within 300 km radius from each grid point. A significant decrease in seismic b value was seen when declustered catalog was used which illustrates that a larger proportion of dependent events in the earthquake catalog are related to lower magnitude events. A list of 203,448 earth- quakes (including aftershocks and foreshocks) occurred in the region covering the period from 250 B.C. to 2010 A.D. with all available details is uploaded in the website http://www.civil.iisc.ernet.in/*sreevals/resource.htm.
Resumo:
The potential of Citrobacter freundii, a Gram negative bacteria for the remediation of hexavalent chromium (Cr(VI)) and trivalent chromium (Cr(III))) from aqueous solutions was investigated. Bioremediation of Cr(VI) involved both biosorption and bioreduction processes, as compared to only biosorption process observed with respect to Cr(III) bioremediation. In the case of Cr(VI) bioremediation studies, about 59 % biosorption was achieved at an equilibrium time of 2 h, initial Cr(VI) concentration of 4 mg/L, pH 1 and a biomass loading of 5x10(11) cells/mL. The remainder, 41 %, was found to be in the form of Cr(111) ions owing to bioreduction of Cr(VI) by the bacteria resulting in the absence of Cr(VI) ions in the residue, there by meeting the USEPA specifications. Similar studies were carried out using Cr(III) solution for an equilibrium time of 2 h, Cr(III) concentration of 4 mg/L, pH 3 and a biomass loading of 6.3x10(11) cells/mL., wherein a maximum biosorption of about 30 % was achieved.
Resumo:
Friction stir processing (FSP) is emerging as one of the most competent severe plastic deformation (SPD) method for producing bulk ultra-fine grained materials with improved properties. Optimizing the process parameters for a defect free process is one of the challenging aspects of FSP to mark its commercial use. For the commercial aluminium alloy 2024-T3 plate of 6 mm thickness, a bottom-up approach has been attempted to optimize major independent parameters of the process such as plunge depth, tool rotation speed and traverse speed. Tensile properties of the optimum friction stir processed sample were correlated with the microstructural characterization done using Scanning Electron Microscope (SEM) and Electron Back-Scattered Diffraction (EBSD). Optimum parameters from the bottom-up approach have led to a defect free FSP having a maximum strength of 93% the base material strength. Micro tensile testing of the samples taken from the center of processed zone has shown an increased strength of 1.3 times the base material. Measured maximum longitudinal residual stress on the processed surface was only 30 MPa which was attributed to the solid state nature of FSP. Microstructural observation reveals significant grain refinement with less variation in the grain size across the thickness and a large amount of grain boundary precipitation compared to the base metal. The proposed experimental bottom-up approach can be applied as an effective method for optimizing parameters during FSP of aluminium alloys, which is otherwise difficult through analytical methods due to the complex interactions between work-piece, tool and process parameters. Precipitation mechanisms during FSP were responsible for the fine grained microstructure in the nugget zone that provided better mechanical properties than the base metal. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Grating Compression Transform (GCT) is a two-dimensional analysis of speech signal which has been shown to be effective in multi-pitch tracking in speech mixtures. Multi-pitch tracking methods using GCT apply Kalman filter framework to obtain pitch tracks which requires training of the filter parameters using true pitch tracks. We propose an unsupervised method for obtaining multiple pitch tracks. In the proposed method, multiple pitch tracks are modeled using time-varying means of a Gaussian mixture model (GMM), referred to as TVGMM. The TVGMM parameters are estimated using multiple pitch values at each frame in a given utterance obtained from different patches of the spectrogram using GCT. We evaluate the performance of the proposed method on all voiced speech mixtures as well as random speech mixtures having well separated and close pitch tracks. TVGMM achieves multi-pitch tracking with 51% and 53% multi-pitch estimates having error <= 20% for random mixtures and all-voiced mixtures respectively. TVGMM also results in lower root mean squared error in pitch track estimation compared to that by Kalman filtering.
Resumo:
Diffusion couple experiments are conducted to study phase evolutions in the Co-rich part of the Co-Ni-Ta phase diagram. This helps to examine the available phase diagram and propose a correction on the stability of the Co2Ta phase based on the compositional measurements and X-ray analysis. The growth rate of this phase decreases with an increase in Ni content. The same is reflected on the estimated integrated interdiffusion coefficients of the components in this phase. The possible reasons for this change are discussed based on the discussions of defects, crystal structure and the driving forces for diffusion. Diffusion rate of Co in the Co2Ta phase at the Co-rich composition is higher because of more number of Co-Co bonds present compared to that of Ta-Ta bonds and the presence of Co antisites for the deviation from the stoichiometry. The decrease in the diffusion coefficients because of Ni addition indicates that Ni preferably replaces Co antisites to decrease the diffusion rate. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Materials with widely varying molecular topologies and exhibiting liquid crystalline properties have attracted considerable attention in recent years. C-13 NMR spectroscopy is a convenient method for studying such novel systems. In this approach the assignment of the spectrum is the first step which is a non-trivial problem. Towards this end, we propose here a method that enables the carbon skeleton of the different sub-units of the molecule to be traced unambiguously. The proposed method uses a heteronuclear correlation experiment to detect pairs of nearby carbons with attached protons in the liquid crystalline core through correlation of the carbon chemical shifts to the double-quantum coherences of protons generated through the dipolar coupling between them. Supplemented by experiments that identify non-protonated carbons, the method leads to a complete assignment of the spectrum. We initially apply this method for assigning the C-13 spectrum of the liquid crystal 4-n-pentyl-4'-cyanobiphenyl oriented in the magnetic field. We then utilize the method to assign the aromatic carbon signals of a thiophene based liquid crystal thereby enabling the local order-parameters of the molecule to be estimated and the mutual orientation of the different sub-units to be obtained.