247 resultados para optical energy gap
Resumo:
Nucleation at large metastability is still largely an unsolved problem, even though it is a problem of tremendous current interest, with wide-ranging practical value, from atmospheric research to materials science. It is now well accepted that the classical nucleation theory (CNT) fails to provide a qualitative picture and gives incorrect quantitative values for such quantities as activation-free energy barrier and supersaturation dependence of nucleation rate, especially at large metastability. In this paper, we present an alternative formalism to treat nucleation at large supersaturation by introducing an extended set of order parameters in terms of the kth largest liquid-like clusters, where k = 1 is the largest cluster in the system, k = 2 is the second largest cluster and so on. At low supersaturation, the size of the largest liquid-like cluster acts as a suitable order parameter. At large supersaturation, the free energy barrier for the largest liquid-like cluster disappears. We identify this supersaturation as the one at the onset of kinetic spinodal. The kinetic spinodal is system-size-dependent. Beyond kinetic spinodal many clusters grow simultaneously and competitively and hence the nucleation and growth become collective. In order to describe collective growth, we need to consider the full set of order parameters. We derive an analytic expression for the free energy of formation of the kth largest cluster. The expression predicts that, at large metastability (beyond kinetic spinodal), the barrier of growth for several largest liquid-like clusters disappears, and all these clusters grow simultaneously. The approach to the critical size occurs by barrierless diffusion in the cluster size space. The expression for the rate of barrier crossing predicts weaker supersaturation dependence than what is predicted by CNT at large metastability. Such a crossover behavior has indeed been observed in recent experiments (but eluded an explanation till now). In order to understand the large numerical discrepancy between simulation predictions and experimental results, we carried out a study of the dependence on the range of intermolecular interactions of both the surface tension of an equilibrium planar gas-liquid interface and the free energy barrier of nucleation. Both are found to depend significantly on the range of interaction for the Lennard-Jones potential, both in two and three dimensions. The value of surface tension and also the free energy difference between the gas and the liquid phase increase significantly and converge only when the range of interaction is extended beyond 6-7 molecular diameters. We find, with the full range of interaction potential, that the surface tension shows only a weak dependence on supersaturation, so the reason for the breakdown of CNT (with simulated values of surface tension and free energy gap) cannot be attributed to the supersaturation dependence of surface tension. This remains an unsettled issue at present because of the use of the value of surface tension obtained at coexistence.
Resumo:
Electron transfer reactions in large molecules may often be coupled to both the polar solvent modes and the intramolecular vibrational modes of the molecule. This can give rise to a complex dynamics which may in some systems, like betaine, be controlled more by vibrational rather than by solvent effects. Additionally, a significant contribution from an ultrafast relaxation component in the solvation dynamics may enhance the complexity. To explain the wide range of behavior that has been observed experimentally, Barbara et al. recently proposed that a model of an electron transfer reaction should minimally consist of a low-frequency classical solvent mode (X), a low-frequency vibrational mode (Q), and a high-frequency quantum mode (q) (J. Phys. Chem. 1991, 96, 3728). In the present work, a theoretical study of this model is described. This study generalizes earlier work by including the biphasic solvent response and the dynamics of the low-frequency vibrational mode in the presence of a delocalized, extended reaction zone. A novel Green's function technique has been developed which allowed us to study the non-Markovian dynamics on a multidimensional surface. The contributions from the high-frequency vibrational mode and the ultrafast component in the non-Markovian solvent dynamics are found to be primarily responsible for the dramatic increase in charge transfer rate over the prediction of the classical theories that neglect both these factors. These, along with a large coupling between the reactant and the product states, may combine to render the electron transfer rate both very large and constant over a wide range of solvent relaxation rates. A study on the free energy gap dependence of the electron transfer rate reveals that the rates are sensitive to changes in the quantum frequency particularly when the free energy gap is very large.
Resumo:
We report a dramatic change in effective three-photon absorption coefficient of amorphous Ge16As29Se55 thin films, when its optical band gap decreases by 10 meV with 532 nm light illumination. This large change provides valuable information on the higher excited states, which are otherwise inaccessible via normal optical absorption. The results also indicate that photodarkening in chalcogenide glasses can serve as an effective tool to tune the multiphoton absorption in a rather simple way. (C) 2011 American Institute of Physics.
Resumo:
Inspired by the exact solution of the Majumdar-Ghosh model, a family of one-dimensional, translationally invariant spin Hamiltonians is constructed. The exchange coupling in these models is antiferromagnetic, and decreases linearly with the separation between the spins. The coupling becomes identically zero beyond a certain distance. It is rigorously proved that the dimer configuration is an exact, superstable ground-state configuration of all the members of the family on a periodic chain. The ground state is twofold degenerate, and there exists an energy gap above the ground state. The Majumdar-Ghosh Hamiltonian with a twofold degenerate dimer ground state is just the first member of the family. The scheme of construction is generalized to two and three dimensions, and illustrated with the help of some concrete examples. The first member in two dimensions is the Shastry-Sutherland model. Many of these models have exponentially degenerate, exact dimer ground states.
Resumo:
The title compound, La14V6CuO36.5, was prepared from a stoichiometric mixture of La2O3,V2O5, and CuO at 1050-1080 degreesC. The compound forms transparent, pale green crystals and was characterized by wavelength dispersive spectroscopy and single crystal X-ray diffraction. The structure contains isolated VO43- tetrahedra and [OCuO](3-) sticks dispersed in a lanthanum oxide network. Films of La14V6CuO36.5 were grown on R-plane sapphire by using pulsed laser deposition. Rutherford backscattering spectroscopic and X-ray diffraction analyses of the films showed oriented growth of the title phase, a similar to5 eV optical band gap and n-type conductivity. The compound is an example of a transparent copper(I) oxide.
Resumo:
We have shown that the general theories of metals and semiconductors can be employed to understand the diameter and voltage dependency of current through metallic and semiconducting carbon nanotubes, respectively. The current through a semiconducting multiwalled carbon nanotube (MWCNT) is associated with the energy gap that is different for different shells. The contribution of the outermost shell is larger as compared to the inner shells. The general theories can also explain the diameter dependency of maximum current through nanotubes. We have also compared the current carrying ability of a MWCNT and an array of the same diameter of single wall carbon nanotubes (SWCNTs) and found that MWCNTs are better suited and deserve further investigation for possible applications as interconnects.
Resumo:
Titanium dioxide (TiO(2)) films have been deposited on glass and p-silicon (1 0 0) substrates by DC magnetron sputtering technique to investigate their structural, electrical and optical properties. The surface composition of the TiO(2) films has been analyzed by X-ray photoelectron spectroscopy. The TiO(2) films formed on unbiased substrates were amorphous. Application of negative bias voltage to the substrate transformed the amorphous TiO(2) into polycrystalline as confirmed by Raman spectroscopic studies. Thin film capacitors with configuration of Al/TiO(2)/p-Si have been fabricated. The leakage current density of unbiased films was 1 x10(-6) A/cm(2) at a gate bias voltage of 1.5 V and it was decreased to 1.41 x 10(-7) A/cm(2) with the increase of substrate bias voltage to -150 V owing to the increase in thickness of interfacial layer of SiO(2). Dielectric properties and AC electrical conductivity of the films were studied at various frequencies for unbiased and biased at -150 V. The capacitance at 1 MHz for unbiased films was 2.42 x 10(-10) F and it increased to 5.8 x 10(-10) F in the films formed at substrate bias voltage of -150 V. Dielectric constant of TiO(2) films were calculated from capacitance-voltage measurements at 1 MHz frequency. The dielectric constant of unbiased films was 6.2 while those formed at -150 V it increased to 19. The optical band gap of the films decreased from 3.50 to 3.42 eV with the increase of substrate bias voltage from 0 to -150 V. (C) 2011 Elsevier B. V. All rights reserved.
Resumo:
InAsxSb1−x alloys show a strong bowing in the energy gap, the energy gap of the alloy can be less than the gap of the two parent compounds. The authors demonstrate that a consequence of this alloying is a systematic degradation in the sharpness of the absorption edge. The alloy disorder induced band-tail (Urbach tail) characteristics are quantitatively studied for InAs0.05Sb0.95.
Resumo:
We have investigated the electronic structure of a double perovskite Ca2FeReO6 using photoemission spectroscopy and LDA+U bandstructure calculations. Small spectral weight at the Fermi level observed above the metal–insulator transition temperature, gradually disappears with decreasing T, forming a small (≤50 meV) energy gap. To reproduce this small energy gap, we require a very large effective U (Ueff) for Re (4 eV) in addition to Ueff of 4 eV for Fe. From simple calculations in terms of the ionic radii, we demonstrate that the Fe–Re bandwidth is smaller than that of Fe–Mo in Ca2FeMoO6, which should yield a strong electron correlation in the Re 5d bands.
Resumo:
A density matrix renormalization group (DMRG) algorithm is presented for the Bethe lattice with connectivity Z = 3 and antiferromagnetic exchange between nearest-neighbor spins s = 1/2 or 1 sites in successive generations g. The algorithm is accurate for s = 1 sites. The ground states are magnetic with spin S(g) = 2(g)s, staggered magnetization that persists for large g > 20, and short-range spin correlation functions that decrease exponentially. A finite energy gap to S > S(g) leads to a magnetization plateau in the extended lattice. Closely similar DMRG results for s = 1/2 and 1 are interpreted in terms of an analytical three-site model.
Resumo:
Low temperature solution combustion method was employed to synthesize Dy2O3 nanophosphors using two different fuels (sugar and oxalyl dihydrazine (ODH)). Powder X-ray diffraction confirm pure cubic phase and the estimated particle size from Scherrer's method in sugar and ODH fuel was found to be 26 and 78 nm, respectively, and are in close agreement with those obtained using TEM and W-H plot analysis. SEM micrographs reveal porous, irregular shaped particles with large agglomeration in both the fuels. An optical band gap of 5.24 eV and 5.46 eV was observed for Dy2O3 for sugar and ODH fuels, respectively. The blueshift observed in sugar fuel is attributed to the particles size effect. Thermoluminescence (TL) response of cubic Dy2O3 nanophosphors prepared by both fuels was examined using gamma and UV radiations. The thermoluminescence of sugar used samples shows a single glow peak at 377 degrees C for 1-4 kGy gamma irradiations. When dose is increased to 5 kGy, two more shouldered peaks were observed at 245 and 310 degrees C. However, in TL of ODH used samples, a single glow peak at 376 degrees C was observed. It is observed that TL intensity is found to be more in sugar used samples. In UV irradiated samples a single glow peak at 365 degrees C was recorded in both the fuels with a little variation in TL intensity. The trapping parameters were estimated by different methods and the results are discussed. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Gd 2O 3 nanoparticles (27-60nm) have been synthesized by the low temperature solution combustion method using citric acid, urea, glycine and oxalyl dihydrazide (ODH) as fuels in a short time. The structural and luminescence properties have been carried out using powder X-ray diffraction (PXRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), Raman, UV-Vis, photoluminescence (PL) and thermoluminescence (TL) techniques. The optical band gap values were estimated for as formed and 800°C calcined samples. The band gap values in as-formed and calcined samples were found to be in the range 4.89-5.59eV. It is observed that, the band gap values are lower for as-formed products and it has been attributed to high degree of structural defects. However, in calcined samples, structure becomes more order with reduced structure defects. Upon 270nm excitation, deep blue UV-band at �390nm along with blue (420-482nm), green (532nm) and red emission (612nm) was observed. The 390nm emission peak may be attributed to recombination of delocalized electron close to the conduction band with a single charged state of surface oxygen vacancy. TL measurements were carried out on Gd 2O 3 prepared by different fuels by irradiating with γ-rays (1kGy). A well resolved glow peak at 230°C was observed for all the samples. It is observed that TL intensity is found to be higher in for urea fuel when compared to others. From TL glow curves the kinetic parameters were estimated using Chen's peak shape method and results are discussed in detail. © 2012 Elsevier B.V.
Resumo:
DC reactive magnetron sputtering technique was employed for deposition of titanium dioxide (TiO2) films. The films were formed on Corning glass and p-Si (100) substrates by sputtering of titanium target in an oxygen partial pressure of 6x10-2 Pa and at different substrate temperatures in the range 303 673 K. The films formed at 303 K were X-ray amorphous whereas those deposited at substrate temperatures?=?473 K were transformed into polycrystalline nature with anatase phase of TiO2. Fourier transform infrared spectroscopic studies confirmed the presence of characteristic bonding configuration of TiO2. The surface morphology of the films was significantly influenced by the substrate temperature. MOS capacitor with Al/TiO2/p-Si sandwich structure was fabricated and performed currentvoltage and capacitancevoltage characteristics. At an applied gate voltage of 1.5 V, the leakage current density of the device decreased from 1.8?x?10-6 to 5.4?x?10-8 A/cm2 with the increase of substrate temperature from 303 to 673 K. The electrical conduction in the MOS structure was more predominant with Schottky emission and Fowler-Nordheim conduction. The dielectric constant (at 1 MHz) of the films increased from 6 to 20 with increase of substrate temperature. The optical band gap of the films increased from 3.50 to 3.56 eV and refractive index from 2.20 to 2.37 with the increase of substrate temperature from 303 to 673 K. Copyright (c) 2012 John Wiley & Sons, Ltd.
Resumo:
High density transparent glasses (7.86 g/cc) were fabricated in the 2Bi(2)O(3)-B2O3 (BBO) system. Optical band gap of the obtained glasses was found to be 2.6eV. The refractive index measured for these glasses was 2.25 +/- 0.05 at lambda=543 nm. Nonlinear refraction and absorption studies were carried out on the BBO glasses using z-scan technique a lambda=532 nm of 10 ns pulse width. The nonlinear refractive index obtained was n(2)=12.1x10(-14) cm(2)/W and nonlinear absorption coefficient was beta=15.2 cm/GW. The n(2) and beta values of the BBO glasses were large compared to the other reported high index bismuth based oxide glass systems in the literature. These were attributed to the high density, high linear refractive index, low band gap and two photon absorption associated with these glasses. The electronic origin of large nonlinearities was discussed based on bond-orbital theory.
Resumo:
A comparative study of spherical and rod-like nanocrystalline GdO:Eu (GdEuO) red phosphors prepared by solution combustion and hydrothermal methods have been reported. Powder X-ray diffraction (PXRD) results confirm the as-formed product in combustion method showing mixed phase of monoclinic and cubic of GdO:Eu. Upon calcinations at 800C for 3 h, dominant cubic phase was achieved. The as-formed precursor hydrothermal product shows hexagonal Gd(OH):Eu phase and it converts to pure cubic phase of GdO:Eu on calcination at 600C for 3 h. TEM micrographs of hydrothermally prepared cubic GdO:Eu phase shows nanorods with a diameter of 15 nm and length varying from 50 to 150 nm, whereas combustion product shows the particles to be of irregular shape, with different sizes in the range 50-250 nm. Dominant red emission (612 nm) was observed in cubic GdO:Eu which has been assigned to transition. However, in hexagonal Gd(OH):Eu, emission peaks at 614 and 621 nm were observed. The strong red emission of cubic GdO:Eu nanophosphors by hydrothermal method are promising for high performance display materials. The variation in optical energy bandgap () was noticed in as-formed and heat treated systems in both the techniques. This is due to more ordered structure in heat treated samples and reduction in structural defects.