138 resultados para electrical conductivity of poly(p-phenylene sulfide)
Resumo:
Thioacetamide, a hepatocarcinogen and an inhibitor of heme synthesis, blocks the phenobarbitone- mediated increase in the transcription of cytochrome P-450b+e messenger RNA in rat liver. This property is also shared by CoCl, and 3-amino-l,2,4-triazole, two other inhibitors of heme synthesis. Thus, it appears feasible that heme may serve as a positive regulator of cytochrome P-450b+e gene transcription. Thioacetamide enhances albumin messenger RNA concentration, whereas phenobarbitone decreases the same. However, these changes in albumin messenger RNA concentration are not accompanied by corresponding changes in the transcription rates. Therefore, drug-mediated changes in albumin messenger RNA concentration are due to posttranscriptional regulation. The property of thioacetamide to enhance the albumin messenger RNA concentration is not shared by CoC1, and 3-amino- 1,2,4-triazole. Therefore, heme does not appear to be a regulatory molecule mediating the reciprocal changes brought about in the concentrations of cytochrome P-450b+e and albumin messenger RNAs.
Resumo:
The morphology and crystal growth of poly(l-lactic acid), PLLA have been studied from the melt as a function of undercooling and molecular weight using hot stage microscopy. Attention has been given to the application of growth rate equation on the growth rate data of PLLA and thus various nucleation parameters have been calculated. The criteria of Regime I and Regime II types of crystallization has been applied for the evaluation of substrate lengths.
Resumo:
Electrically active deep levels related to nickel in silicon are studied under different diffusion conditions, quenching modes, and annealing conditions. The main nickel-related level is at Ev+0.32 eV. Levels at Ev+0.15 and Ev+0.54 eV are not related to nickel while those at Ev+0.50 and Ev+0.28 eV may be nickel related. Their concentrations depend on the quenching mode. There is no nickel-related level in the upper half of the band gap. The complicated annealing behavior of the main nickel-related level is explained on the basis of the formation and dissociation of a nickel-vacany complex. Journal of Applied Physics is copyrighted by The American Institute of Physics.
Resumo:
The oxidative degradation of poly(acrylic acid) (PAA), a water soluble polymer, was studied at various temperatures with different concentrations of persulfates, potassium persulfate (KPS), ammonium persulfate (APS) and sodium persulfate (SPS). The photodegradation of PAA was also examined with APS as oxidizer. The degraded samples were analyzed for the time evolution of molecular weight distribution by gel permeation chromatography. A theoretical model based on the continuous distribution kinetics was developed that accounted for the polymer degradation and the dissociation of persulfate. The rate coefficients for the oxidative and photooxidative degradation of PAA were determined from the parametric fit of the model with experimental data. The rate of degradation increased with increasing amount of persulfate in both oxidative and photooxidative degradation. The rate of degradation also increased with increasing temperature in the case of oxidative degradation.
Resumo:
D.C. conductivity behaviour of a variety of chalcogenide glasses have been analysed using ln σ vs Image plots as suggested in the multiphonon assisted polaron hopping model of Triberis and Friedman. The agreement with the model is very satisfactory and further analysis of the model using c.
Resumo:
Electrical conductivities and dielectric properties of glassy Ag4P2O7 have been investigated as a function of temperature and frequency. The variation of the properties is consistent with the structure of this glass which consists of a variety of polymeric anion species. Upon crystallization Ag4P2O7 appears to retain some of the anionic species in the solid solution as evident from the phase transition behaviour at higher temperatures.
Resumo:
A cDNA clone for cytochrome P-450e, a phenobarbitone-inducible species in rat liver, has been isolated and characterized. With the use of this cloned DNA, an attempt has been initiated to elucidate the factors regulating the cytochrome P-450 gene expression. Inhibitors of heme synthesis such as cobalt chloride and 3-amino-1,2,4-triazole block the induction of cytochrome P-450e by phenobarbitone at the level of transcription. This is evident from the decrease in the rate of synthesis of cytochrome P-450e, a decrease in the levels of specific translatable messenger RNA, a decrease in the specific cytoplasmic and nuclear messenger RNA contents, and nuclear transcription of cytochrome P-450e gene, as revealed by hybridization to the cloned probe, under these conditions. It is proposed that heme is a general regulator of cytochrome P-450 gene expression at the level of transcription, whereas the drug or its metabolite would impart the specificity needed for the induction of a particular species.
Resumo:
An investigation of the problem of controlled doping of amorphous chalcogenide semiconductors utilizing a Bridgman anvil high pressure technique, has been undertaken. Bulk amorphous semiconducting materials (GeSe3.5)100-x doped with M = Bi (x = 2, 4, 10) and M = Sb (x = 10) respectively are studied up to a pressure of 100 kbar down to liquid nitrogen temperature, with a view to observe the impurity induced modifications. Measurement of the electrical conductivity of the doped samples under quasi-hydrostatic pressure reveals that the pressure induced effects in lightly doped (2 at % Bi) and heavily doped (x = 4, 10) semiconductors are markedly different. The pressure effects in Sb-doped semiconductors are quite different from those in Bi-doped material.
Resumo:
We show simultaneous p- and n-type carrier injection in a bilayer graphene channel by varying the longitudinal bias across the channel and the top-gate voltage. The top gate is applied electrochemically using solid polymer electrolyte and the gate capacitance is measured to be 1.5 microF cm(-2), a value about 125 times higher than the conventional SiO(2) back-gate capacitance. Unlike the single-layer graphene, the drain-source current does not saturate on varying the drain-source bias voltage. The energy gap opened between the valence and conduction bands using top- and back-gate geometry is estimated.
Resumo:
An irreversible pressure induced semiconductor-to-metal transition in bulk Ge20Te80 glass is observed at about 5 GPa pressure. The high pressure phase has a face centered cubic structure with a lattice constant 6.42 A° as deduced by X-ray diffraction studies on the pressure quenched samples. The temperature and pressure dependence of the electrical resistivity confirms the observed transition to be a semiconductor-to-metal transition. The temperature dependence of thermo electric power is also reported.
Resumo:
We present a microscopic model for calculating the AC conductivity of a finite length line junction made up of two counter-or co-propagating single mode quantum Hall edges with possibly different filling fractions. The effect of density-density interactions and a local tunneling conductance (sigma) between the two edges is considered. Assuming that sigma is independent of the frequency omega, we derive expressions for the AC conductivity as a function of omega, the length of the line junction and other parameters of the system. We reproduce the results of Sen and Agarwal (2008 Phys. Rev. B 78 085430) in the DC limit (omega -> 0), and generalize those results for an interacting system. As a function of omega, the AC conductivity shows significant oscillations if sigma is small; the oscillations become less prominent as sigma increases. A renormalization group analysis shows that the system may be in a metallic or an insulating phase depending on the strength of the interactions. We discuss the experimental implications of this for the behavior of the AC conductivity at low temperatures.
Resumo:
Diluents (either low molecular weight compounds orother polymers) are known to modify the morphology, the rates of nucleation and growth of polymers 1- 4. Recentlybinary systems in which both the components crystallize simultaneously to give a eutectic solid have been studied with great interest. Carbonnei et al.
Resumo:
The performance of optoelectronic devices critically depends on the quality of active layer. An effective way to obtain a high quality layers is by creating excess of metal atoms through various heat treatments. Recently, rapid thermal annealing (RTA) has proved a versatile technique for the post-treatment of semiconductor materials as compared to other techniques due to its precise control over the resources. Thus, we carried out a set of experiments on SnS films to explore the influence of RTA treatment on their properties. From these experiments we noticed that the films treated at 400 °C for 1 min in N2 atmosphere have a low electrical resistivity of ~5 Ωcm with relatively high Hall mobility and carrier density of 99 cm2/Vs and 1.3 × 1016 cm−3, respectively. The observed results, therefore, emphasise that it is possible to obtain good quality SnS films through RTA treatment without disturbing their crystal structure.
Resumo:
The relative stabilities of a- and Blo-helical structures for polymers of a-aminoisobutyric acid (Aib) have been worked out, using the classical potential energy functions. To make a comparative study, we have used Buckingham "6-exp" and Kitaigorodsky's potential functions. Conformational analysis of the dipeptide segment with Aib residue indicates the necessity for nonplanar distortion of the peptide unit, which is a common feature in the observed crystal structures with Aib residues. In the range of Aw -10 to +loo studied, a-helical conformations are preferred in the region -3" < Aw < +loo, and Blo-helical conformations are preferred in the region -3" > Aw > -10'. Minimum energy conformations for right-handed structures are found in the +ue region of Aw and correspondingly for left-handed structures in the -ue region of Aw. For Aw - 6", a-helical structures have four- or near fourfold symmetry with h - 1.5 A. Such a helix with n = 4 and h = 1.5 A is termed an a'-helix. This structure is found to be consistent with the electron diffraction data of Malcolm3 and energetically more favorable than the standard 310-helix.