287 resultados para cyclopropane derivative
Resumo:
T cell-mediated cytotoxicity against Mycobacterium tuberculosis (MTB)-infected macrophages may be a major mechanism of specific host defense, but little is known about such activities in the lung. Thus, the capacity of alveolar lymphocyte MTB-specific cell lines (AL) and alveolar macrophages (AM) from tuberculin skin test-positive healthy subjects to serve as CTL and target cells, respectively, in response to MTB (H37Ra) or purified protein derivative (PPD) was investigated. Mycobacterial Ag-pulsed AM were targets of blood CTL activity at E:T ratios of > or = 30:1 (51Cr release assay), but were significantly more resistant to cytotoxicity than autologous blood monocytes. PPD- plus IL-2-expanded AL and blood lymphocytes were cytotoxic for autologous mycobacterium-stimulated monocytes at E:T ratios of > or = 10:1. The CTL activity of lymphocytes expanded with PPD was predominantly class II MHC restricted, whereas the CTL activity of lymphocytes expanded with PPD plus IL-2 was both class I and class II MHC restricted. Both CD4+ and CD8+ T cells were enriched in BL and AL expanded with PPD and IL-2, and both subsets had mycobacterium-specific CTL activity. Such novel cytotoxic responses by CD4+ and CD8+ T cells may be a major mechanism of defense against MTB at the site of disease activity.
Resumo:
We propose a self-regularized pseudo-time marching scheme to solve the ill-posed, nonlinear inverse problem associated with diffuse propagation of coherent light in a tissuelike object. In particular, in the context of diffuse correlation tomography (DCT), we consider the recovery of mechanical property distributions from partial and noisy boundary measurements of light intensity autocorrelation. We prove the existence of a minimizer for the Newton algorithm after establishing the existence of weak solutions for the forward equation of light amplitude autocorrelation and its Frechet derivative and adjoint. The asymptotic stability of the solution of the ordinary differential equation obtained through the introduction of the pseudo-time is also analyzed. We show that the asymptotic solution obtained through the pseudo-time marching converges to that optimal solution provided the Hessian of the forward equation is positive definite in the neighborhood of optimal solution. The superior noise tolerance and regularization-insensitive nature of pseudo-dynamic strategy are proved through numerical simulations in the context of both DCT and diffuse optical tomography. (C) 2010 Optical Society of America.
Resumo:
A kinetic study of the tumor-associated galactopyranosyl-(1→3)-2-acetamido-2-deoxy-α-d-galactopyranoside (T-antigen) with lectin peanut agglutinin is described. The disaccharide antigen was synthesized by chemical methods and was functionalized suitably for immobilization onto a carboxy-methylated sensor chip. The ligand immobilized surface was allowed interaction with the lectin peanut agglutinin, which acted as the analyte and the interaction was studied by the surface plasmon resonance method. The ligand—lectin interaction was characterized by the kinetic on-off rates and a bivalent analyte binding model was found to describe the observed kinetic constants. It was identified that the antigen-lectin interaction had a faster association rate constant (k a1) and a slower dissociation rate constant (k d1) in the initial binding step. The subsequent binding step showed much reduced kinetic rates. The antigen-lectin interaction was compared with the kinetic rates of the interaction of a galactopyranosyl-(1→4)-β-d-galactopyranoside derivative and a mannopyranoside derivative with the lectin.
Resumo:
Catalytic cyclopropanation reactions of olefins with ethyl diazoacetate were carried out using copper(I) diphosphinoamine (PPh2)(2)N(R) (R = Pr-i, H, Ph and -CH2-C6H4-CH=CH2) complexes at 40 degrees C in chloroform. High yields of the cyclopropanes were obtained in all cases. The rate of the reaction was influenced by the nuclearity of the complex and the binding mode of the ligand which was either bridging or chelating. Comparison of isostructural complexes shows that the rate follows the order R = Pr-i > H > Ph, where R is the substituent on the N. However, cyclopropane formation versus dimerization of the carbene, and trans to cis ratios of cyclopropane was similar in all cases. The nearly identical selectivity for different products formed was indicative of a common catalytic intermediate. A labile "copper-olefin" complex which does not involve the phosphine or the counterion is the most likely candidate. The differences in the reaction rates for different complexes are attributed to differences in the concentration of the catalytically active species which are in equilibrium with the catalytically inactive copper-phosphinoamine complex. To test the hypothesis a diphosphinoamine polymer complexed to copper(I) was used as a heterogeneous catalyst. Leaching of copper(I) and deactivation of the catalyst confirmed the proposed mechanism. (C) 2008 Elsevier B. V. All rights reserved.
Resumo:
series of thiosugar derivatives (thiolevomannosans) derived from mannose were synthesized and their inhibitory activity was tested against alpha-mannosidase (jack bean). These inhibitors were found to be more potent than the well-known inhibitors like kifunensine and deoxymannojirimycin based on docking and biochemical studies. The sulfone derivative 10 was shown to be the best inhibitor of alpha-mannosidase with the K-i value of 350 nM. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Enantiospecific synthesis of thaps-8-en-5-ol, comprising of the carbon framework of a small group of sesquiterpenes containing three contiguous quaternary carbon atoms has been described. (R)-Carvone has been employed as the chiral starting material and a combination of intramolecular alkyation and Criegec fragmentation have been employed for intramolecular stereospecific transfer of the chirality. An intramolecular diazoketone cyclopropanation and regioselective cyclopropane ring cleavage reactions have been employed for the creation of the three requisite contiguous quaternary carbon atoms.
Resumo:
The mechanical properties of amorphous alloys have proven both scientifically unique and of potential practical interest, although the underlying deformation physics of these materials remain less firmly established as compared with crystalline alloys. In this article, we review recent advances in understanding the mechanical behavior of metallic glasses, with particular emphasis on the deformation and fracture mechanisms. Atomistic as well as continuum modeling and experimental work on elasticity, plastic flow and localization, fracture and fatigue are all discussed, and theoretical developments are connected, where possible, with macroscopic experimental responses. The role of glass structure on mechanical properties, and conversely, the effect of deformation upon glass structure, are also described. The mechanical properties of metallic glass-derivative materials – including in situ and ex situ composites, foams and nanocrystal-reinforced glasses – are reviewed as well. Finally, we identify a number of important unresolved issues for the field.
Resumo:
The significance of treating rainfall as a chaotic system instead of a stochastic system for a better understanding of the underlying dynamics has been taken up by various studies recently. However, an important limitation of all these approaches is the dependence on a single method for identifying the chaotic nature and the parameters involved. Many of these approaches aim at only analyzing the chaotic nature and not its prediction. In the present study, an attempt is made to identify chaos using various techniques and prediction is also done by generating ensembles in order to quantify the uncertainty involved. Daily rainfall data of three regions with contrasting characteristics (mainly in the spatial area covered), Malaprabha, Mahanadi and All-India for the period 1955-2000 are used for the study. Auto-correlation and mutual information methods are used to determine the delay time for the phase space reconstruction. Optimum embedding dimension is determined using correlation dimension, false nearest neighbour algorithm and also nonlinear prediction methods. The low embedding dimensions obtained from these methods indicate the existence of low dimensional chaos in the three rainfall series. Correlation dimension method is done on th phase randomized and first derivative of the data series to check whether the saturation of the dimension is due to the inherent linear correlation structure or due to low dimensional dynamics. Positive Lyapunov exponents obtained prove the exponential divergence of the trajectories and hence the unpredictability. Surrogate data test is also done to further confirm the nonlinear structure of the rainfall series. A range of plausible parameters is used for generating an ensemble of predictions of rainfall for each year separately for the period 1996-2000 using the data till the preceding year. For analyzing the sensitiveness to initial conditions, predictions are done from two different months in a year viz., from the beginning of January and June. The reasonably good predictions obtained indicate the efficiency of the nonlinear prediction method for predicting the rainfall series. Also, the rank probability skill score and the rank histograms show that the ensembles generated are reliable with a good spread and skill. A comparison of results of the three regions indicates that although they are chaotic in nature, the spatial averaging over a large area can increase the dimension and improve the predictability, thus destroying the chaotic nature. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Studies of double-stranded-DNA binding have been performed with three isomeric bis)2-(n-pyridyl)-1H-benzimidazole)s (n = 2, 3, 4). Like the well-known Hoechst 33258, which is a bisbenzimidazole compound, these three isomers bind to the minor groove of duplex DNA. DNA binding by the three isomers was investigated in the presence of the divalent metal ions Mg2+, Co2+, Ni2+, Cu2+, and Zn2+. Ligand-DNA interactions were probed with fluorscence and circular dichroism spectroscopy. These studies revealed that the binding of the 2-pyridyl derivative to DNA is dramatically reduced in the presence of Co2+, Ni2+, and Cu2+ ions and is abolished completely at a ligand/metal-cation ratio of 1:1. Control experiments done with the isomeric 3- and 4-pyridyl derivatives showed that their binding to DNA is unaffected by the aforementioned transition-metal ions. The ability of 2-(2-pyridyl)benzimidazole changes of the ligand associated with ion chelation probably ledto such unusual binding results for the ortho isomer. The addition of ethylenediaminetetraacetic acid (EDTA) reversed the effects completely.
Resumo:
The lipid A and lipopolysaccharide (LPS) binding and neutralizing activities of a synthetic, polycationic, amphiphilic peptide were studied. The branched peptide, designed as a functional analog of polymyxin B, has a six residue hydrophobic sequence, bearing at its N-terminus a penultimate lysine residue whose alpha- and epsilon-amino groups are coupled to two terminal lysine residues. In fluorescence spectroscopic studies designed to examine relative affinities of binding to the toxin, neutralization of surface charge and fluidization of the acyl domains, the peptide was active, closely resembling the effects of polymyxin B and its nonapeptide derivative; however, the synthetic peptide does not induce phase transitions in LPS aggregates as do polymyxin B and polymyxin B nonapeptide. The peptide was also comparable with polymyxin B in its ability to inhibit LPS-mediated IL-l and IL-6 release from human peripheral blood mononuclear cells. The synthetic compound is devoid of antibacterial activities and did not induce conductance fluxes in LPS-containing asymmetric planar membranes. These results strengthen the premise that basicity and amphiphilicity are necessary and sufficient physical properties that ascribe endotoxin binding and neutralizing activities, and further suggest that antibacterial/membrane perturbant and LPS neutralizing activities are dissociable, which may be of value in designing LPS-sequestering agents of low toxicity.
Resumo:
A new performance metric, Peak-Error Ratio (PER) has been presented to benchmark the performance of a class of neuron circuits to realize neuron activation function (NAF) and its derivative (DNAF). Neuron circuits, biased in subthreshold region, based on the asymmetric cross-coupled differential pair configuration and conventional configuration of applying small external offset voltage at the input have been compared on the basis of PER. It is shown that the technique of using transistor asymmetry in a cross-coupled differential pair performs on-par with that of applying external offset voltage. The neuron circuits have been experimentally prototyped and characterized as a proof of concept on the 1.5 mu m AMI technology.
Resumo:
Coating of azobenzene chromophore with multivalent sugar ligands has been accomplished. Such sugar coating allows the study of the isomerization properties of this chromophore in aqueous solutions. The predominantly cis-isomer-containing photostationary state (PS) mixture of these azobenzene derivatives is found to be stable for hours. The rate constants for their isomerization, as well as the Arrhenius activation energies, are determined experimentally. An assessment of the lectin binding properties of the lactoside bearing isomeric azobenzene derivatives, by isothermal calorimetric methods, reveals the existence of an unusual cooperativity in their binding to lectin peanut agglutinin. Thermodynamic parameters evaluated for the trans and the PS mixture are discussed, in detail, for the lactoside bearing bivalent azobenzene derivative.
Resumo:
A new performance metric, Peak-Error Ratio (PER) has been presented to benchmark the performance of a class of neuron circuits to realize neuron activation function (NAF) and its derivative (DNAF). Neuron circuits, biased in subthreshold region, based on the asymmetric cross-coupled differential pair configuration and conventional configuration of applying small external offset voltage at the input have been compared on the basis of PER. It is shown that the technique of using transistor asymmetry in a cross-coupled differential pair performs on-par with that of applying external offset voltage. The neuron circuits have been experimentally prototyped and characterized as a proof of concept on the 1.5 mu m AMI technology.
Resumo:
QUITE OFTEN, metal ions profoundly affect the condensation of carbonyl compounds with primary amines to form Schiff bases as well as their subsequent reactions[I-4]. Condensation of benzaldehyde with o-phenylenediamine (opd) in glacial acetic acid[5] or in absolute alcohol[6] gives benzimidazole derivative, 1-benzyl-2-phenylbenzimidazole (bpbi). In this reaction, the Schiff base N,N'-dibenzylidene-o-phenylenedianfme (dbpd) has been postulated as an intermediate, which cyclises to give bpbi. It was found that the reaction of opd in presence of copperO1) perchlorate with benzaldehyde gave dbpd complex of copper(l) perchlorate instead of bpbi.
Resumo:
Ethylα-bromovinylacetate (VII) was condensed with the sodio derivative of ethyl piperonoylacetate (VIII) to give diethylα-vinyl-α′-piperonoylsuccinate (IX). The latter on reduction with lithium aluminium hydride furnished the triol (X), which underwent smooth cyclisation with 1% ethanolic hydrogen chloride to 2-(3′, -methylenedioxyphenyl)-hydroxymethyl-4-vinyltetrahydrofuran (XIa). The structure of XIa was established by Oppenauer oxidation to an aldehyde. Ozonolysis of XIa afforded samin (I).