349 resultados para complex sequences
Resumo:
Crystals of Eu-(Gly-Gly-Gly).(H2O)5.(ClO4)3 are triclinic, spacegroup P1BAR with a = 9.123 (2), b = 11.185 (5), c = 11.426 (2) angstrom; alpha = 90.79 (2), beta = 98.08 (1), gamma = 98.57 (2)-degrees; Z = 2. The europium cation is surrounded by four oxygens from three different peptide units and four oxygens from water molecules. The geometry around the metal is a distorted bi-capped trigonal prism. The peptide backbone conformation in this complex is compared with those in the free peptide and in various metal complexes. Considerable differences are observed between Eu(III) and Ca(II) complexes of triglycine. (C) Munksgaard 1994.
Resumo:
A new class of polypeptide helices in hybrid sequences containing alpha-, beta-, and gamma-residues is described. The molecular conformations in crystals determined for the synthetic peptides Boc-Leu-Phe-Val-Aib-beta Phe-Leu-Phe-Val-OMe 1 (beta Phe: (S)-beta(3)-homophenylalanine) and Boc-Aib-Gpn-AibGpn-OM2(Gpn:1-(aminomethyl)cycl hexaneacetic acid) reveal expanded helical turns in the hybrid sequences (alpha alpha beta)(n) and (ay), In 1, a repetitive helical structure composed Of C-14 hydrogen-bonded units is observed, whereas 2 provides an example of a repetitive C-12 hydrogen-bonded structure. Using experimentally determined backbone torsion angles for the hydrogen-bonded units formed by hybrid sequences, we have generated energetically favorable hybrid helices. Conformational parameters are provided for C-11, C-12, C-13, C-14, and C-15 helices in hybrid sequences.
Resumo:
The conformational properties of foldamers generated from alpha gamma hybrid peptide sequences have been probed in the model sequence Boc-Aib-Gpn-Aib-Gpn-NHMe. The choice of alpha-aminoisobutyryl (Aib) and gabapentin (Gpn) residues greatly restricts sterically accessible coil formational space. This model sequence was anticipated to be a short segment of the alpha gamma C-12 helix, stabilized by three successive 4 -> 1 hydrogen bonds, corresponding to a backbone-expanded analogue of the alpha polypeptide 3(10)-helix. Unexpectedly, three distinct crystalline polymorphs were characterized in the solid state by X-ray diffraction. In one form, two successive C-12 hydrogen bonds were obtained at the N-terminus, while a novel C-17 hydrogen-bonded gamma alpha gamma turn was observed at the C-terminus. In the other two polymorphs, isolated C-9 and C-7 hydrogen-bonded turns were observed at Gpn (2) and Gpn (4). Isolated C-12 and C-9 turns were also crystallographically established in the peptides Boc-Aib-Gpn-Aib-OMe and Boc-Gpn-Aib-NHMe, respectively. Selective line broadening of NH resonances and the observation of medium range NH(i)<-> NH(i+2) NOEs established the presence of conformational heterogeneity for the tetrapeptide in CDCl3 solution. The NMR results are consistent with the limited population of the continuous C-12 helix conformation. Lengthening of the (alpha gamma)(n) sequences in the nonapeptides Boc-Aib-Gpn-Aib-Gpn-Aib-Gpn-Aib-Gpn-Xxx (Xxx = Aib, Leu) resulted in the observation of all of the sequential NOEs characteristic of an alpha gamma C-12 helix. These results establish that conformational fragility is manifested in short hybrid alpha gamma sequences despite the choice of conformationally constrained residues, while stable helices are formed on chain extension.
Resumo:
In this paper, we present an analysis for the bit error rate (BER) performance of space-time block codes (STBC) from generalized complex orthogonal designs for M-PSK modulation. In STBCs from complex orthogonal designs (COD), the norms of the column vectors are the same (e.g., Alamouti code). However, in generalized COD (GCOD), the norms of the column vectors may not necessarily be the same (e.g., the rate-3/5 and rate-7/11 codes by Su and Xia in [1]). STBCs from GCOD are of interest because of the high rates that they can achieve (in [2], it has been shown that the maximum achievable rate for STBCs from GCOD is bounded by 4/5). While the BER performance of STBCs: from COD (e.g., Alamouti code) can be simply obtained from existing analytical expressions for receive diversity with the same diversity order by appropriately scaling the SNR, this can not be done for STBCs from GCOD (because of the unequal norms of the column vectors). Our contribution in this paper is that we derive analytical expressions for the BER performance of any STBC from GCOD. Our BER analysis for the GCOD captures the performance of STBCs from COD as special cases. We validate our results with two STBCs from GCOD reported by Su and Xia in [1], for 5 and 6 transmit antennas (G(5) and G(6) in [1]) with rates 7/11 and 3/5, respectively.
Resumo:
In this paper, we present an analysis for the bit error rate (BER) performance of space-time block codes (STBC) from generalized complex orthogonal designs for M-PSK modulation. In STBCs from complex orthogonal designs (COD), the norms of the column vectors are the same (e.g., Alamouti code). However, in generalized COD (GCOD), the norms of the column vectors may not necessarily be the same (e.g., the rate-3/5 and rate-7/11 codes by Su and Xia in [1]). STBCs from GCOD are of interest because of the high rates that they can achieve (in [2], it has been shown that the maximum achievable rate for STBCs from GCOD is bounded by 4/5). While the BER performance of STBCs: from COD (e.g., Alamouti code) can be simply obtained from existing analytical expressions for receive diversity with the same diversity order by appropriately scaling the SNR, this can not be done for STBCs from GCOD (because of the unequal norms of the column vectors). Our contribution in this paper is that we derive analytical expressions for the BER performance of any STBC from GCOD. Our BER analysis for the GCOD captures the performance of STBCs from COD as special cases. We validate our results with two STBCs from GCOD reported by Su and Xia in [1], for 5 and 6 transmit antennas (G(5) and G(6) in [1]) with rates 7/11 and 3/5, respectively.
Resumo:
QUITE OFTEN, metal ions profoundly affect the condensation of carbonyl compounds with primary amines to form Schiff bases as well as their subsequent reactions[I-4]. Condensation of benzaldehyde with o-phenylenediamine (opd) in glacial acetic acid[5] or in absolute alcohol[6] gives benzimidazole derivative, 1-benzyl-2-phenylbenzimidazole (bpbi). In this reaction, the Schiff base N,N'-dibenzylidene-o-phenylenedianfme (dbpd) has been postulated as an intermediate, which cyclises to give bpbi. It was found that the reaction of opd in presence of copperO1) perchlorate with benzaldehyde gave dbpd complex of copper(l) perchlorate instead of bpbi.
Resumo:
The line spectral frequency (LSF) of a causal finite length sequence is a frequency at which the spectrum of the sequence annihilates or the magnitude spectrum has a spectral null. A causal finite-length sequencewith (L + 1) samples having exactly L-LSFs, is referred as an Annihilating (AH) sequence. Using some spectral properties of finite-length sequences, and some model parameters, we develop spectral decomposition structures, which are used to translate any finite-length sequence to an equivalent set of AH-sequences defined by LSFs and some complex constants. This alternate representation format of any finite-length sequence is referred as its LSF-Model. For a finite-length sequence, one can obtain multiple LSF-Models by varying the model parameters. The LSF-Model, in time domain can be used to synthesize any arbitrary causal finite-length sequence in terms of its characteristic AH-sequences. In the frequency domain, the LSF-Model can be used to obtain the spectral samples of the sequence as a linear combination of spectra of its characteristic AH-sequences. We also summarize the utility of the LSF-Model in practical discrete signal processing systems.
Resumo:
1. Anhydrous aluminium chloride reacts with phosphorus oxychloride to give a complex with a composition AlCl3.2 POCl3 which can be prepared in the form of a free flowing powder. 2. The phosphorus oxychloride-aluminium chloride complex in nitrobenzene dissociates into AlCl3.POCl3 and POCl3 as indicated by the cryoscopic measurements. 3. The solution of the complex in nitrobenzene has a higher specific conductivity than the corresponding electrical conductivities of individual components. Similar higher electrical conductance is observed when the two components are mixed in nitrobenzene in different proportions. 4.When a solution of anhydrous aluminium chloride in nitrobenzene is titrated conductometrically against a solution of phosphorus oxychloride in nitrobenzene, a limiting value in the conductivity is reached at point corresponding to the molecular composition, the components in the ratio of 1:2 AlCl3: POCl3 in solution. 5. The absorption maxima of the complex in nitrobenzene solution differ from the absorption maximum of the individual components.
Resumo:
The titled complex, obtained by co-crystallization (EtOH/25 degrees C),is apparently the only known complex of the free bases. Its crystal structure, as determined by X-ray diffraction at both 90 K and 313 K, showed that one A-T pair involves a Hoogsteen interaction, and the other a Watson-Crick interaction but only with respect to the adenine unit. The absence of a clear-cut Watson-Crick base pair raises intriguing questions about the basis of the DNA double helix. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The crystal structure of the complex La(NO3)3.4(CH3)2SO has been solved by the heavy-atom method. The complex crystallizes in the monoclinic space group C2/e with four formula units in a unit cell of dimensions a= 14.94, b= 11.04, c= 15.54 A and fl= 109 ° 10'. The parameters have been refined by threedimensional least-squares procedures with anisotropic thermal parameters for all atoms except hydrogen. The final R index for 1257 observed reflexions is 0.094. The La 3 + ion is coordinated by ten oxygen atoms with La-O distances varying from 2.47 to 2.71 A. The geometry of the coordination polyhedron is described.
Resumo:
DNA methyltransferases (MTases) are a group of enzymes that catalyze the methyl group transfer from S-adenosyl-L-methionine in a sequence-specific manner. Orthodox Type II DNA MTases usually recognize palindromic DNA sequences and add a methyl group to the target base (either adenine or cytosine) on both strands. However, there are a number of MTases that recognize asymmetric target sequences and differ in their subunit organization. In a bacterial cell, after each round of replication, the substrate for any MTase is hemimethylated DNA, and it therefore needs only a single methylation event to restore the fully methylated state. This is in consistent with the fact that most of the DNA MTases studied exist as monomers in solution. Multiple lines of evidence suggest that some DNA MTases function as dimers. Further, functional analysis of many restriction-modification systems showed the presence of more than one or fused MTase genes. It was proposed that presence of two MTases responsible for the recognition and methylation of asymmetric sequences would protect the nascent strands generated during DNA replication from cognate restriction endonuclease. In this review, MTases recognizing asymmetric sequences have been grouped into different subgroups based on their unique properties. Detailed characterization of these unusual MTases would help in better understanding of their specific biological roles and mechanisms of action. The rapid progress made by the genome sequencing of bacteria and archaea may accelerate the identification and study of species- and strain-specific MTases of host-adapted bacteria and their roles in pathogenic mechanisms.
Resumo:
Flaviviruses have been shown to induce cell surface expression of major histocompatibility complex class I (MHC-I) through the activation of NF-kappa B. Using IKK1(-/-), IKK2(-/-), NEMO-/-, and IKK1-/- IKK2-/- double mutant as well as p50(-/-) RelA(-/-) cRel(-/-) triple mutant mouse embryonic fibroblasts infected with Japanese encephalitis virus (JEV), we show that this flavivirus utilizes the canonical pathway to activate NF-kappa B in an IKK2- and NEMO-, but not IKK1-, dependent manner. NF-kappa B DNA binding activity induced upon virus infection was shown to be composed of RelA: p50 dimers in these fibroblasts. Type I interferon (IFN) production was significantly decreased but not completely abolished upon virus infection in cells defective in NF-kappa B activation. In contrast, induction of classical MHC-I (class 1a) genes and their cell surface expression remained unaffected in these NF-kappa B-defective cells. However, MHC-I induction was impaired in IFNAR(-/-) cells that lack the alpha/beta IFN receptor, indicating a dominant role of type I IFNs but not NF-kappa B for the induction of MHC-I molecules by Japanese encephalitis virus. Our further analysis revealed that the residual type I IFN signaling in NF-kappa B-deficient cells is sufficient to drive MHC-I gene expression upon virus infection in mouse embryonic fibroblasts. However, NF-kappa B could indirectly regulate MHC-I expression, since JEV-induced type I IFN expression was found to be critically dependent on it.