250 resultados para beta-thalassemia
Resumo:
Ability of the beta-subunit of human chorionic gonadotropin to inhibit the response to lutropin (luteinizing hormone, LH) was tested in the immature rat ovarian system and pregnant-mare-serum-gonadotropin-primed rat ovarian system with progesterone production being used as the response. Human chorionic gonadotropin beta-subunit was found to inhibit human and ovine lutropin-stimulated progesterone production. At a constant dose of lutropin, inhibition was dependent on the concentration of beta-subunit. When concentration of the beta-subunit was kept constant at 5.0 microgram/ml and the concentration of lutropin was varied, the inhibition was maximum at the saturating concentration of the native hormone. The alpha-subunit of the human chorionic gonadotropin did not inhibit the response to lutropin. The lutropin/beta-subunit ratio required to produce an inhibition of response was much lower than that required to bring about an observable inhibition of binding.
Resumo:
Hyoscyamine 6 beta-hydroxylase (H6H; EC 1.14.11.11), an important enzyme in the biosynthesis of tropane alkaloids, catalyzes the hydroxylation of hyoscyamine to give 6 beta-hydroxyhyoscyamine and its epoxidation in the biosynthetic pathway leading to scopolamine. Datura metel produces scopolamine as the predominant tropane alkaloid. The cDNA encoding H6H from D. mete! (DmH6H) was cloned, heterologously expressed and biochemically characterized. The purified recombinant His-tagged H6H from D. mete! (DmrH6H) was capable of converting hyoscyamine to scopolamine. The functionally expressed DmrH6H was confirmed by HPLC and ESI-MS verification of the products, 6 beta-hydroxyhyoscyamine and its derivative, scopolamine; the DmrH6H epoxidase activity was low compared to the hydroxylase activity. The K-m values for both the substrates, hyoscyamine and 2-oxoglutarate, were 50 mu M each. The CD (circular dichroism) spectrum of the DmrH6H indicated a preponderance of alpha-helicity in the secondary structure. From the fluorescence studies, Stern-Volmer constants for hyoscyamine and 2-oxoglutarate were found to be 0.14 M-1 and 0.56 M-1, respectively. These data suggested that the binding of the substrates, hyoscyamine and 2-oxoglutarate, to the enzyme induced significant conformational changes. (C) 2010 Elsevier Masson SAS. All rights reserved.
Resumo:
Conformational studies have been carried out on the X-cis-Pro tripeptide system (a system of three linked peptide units, in the trans-cis-trans configuration) using energy minimization techniques. For X, residues Gly, L-Ala, D-Ala and L-Pro have been used. The energy minima have been classified into different groups based upon the conformational similarity. There are 15, 20, 18 and 6 minima that are possible for the four cases respectively and these fall into 11 different groups. A study of these minima shows that, (i) some minima contain hydrogen bonds - either 4-->1 or 1-->2 type, (ii) the low energy minima qualify themselves as bend conformations, (iii) cis' and trans' conformations are possible for the prolyl residue as also the C(gamma)-endo and C(gamma)-exo puckerings, and (iv) for Pro-cis-Pro, cis' at the first prolyl residue is ruled out, due to the high energy. The available crystal structure data on proteins and peptides, containing cis-Pro segment have been examined with a view to find the minima that occur in solid state. The data from protein show that they fall under two groups. The conformation at X in X-cis-Pro is near extended when it is a non-glycyl residue. In both peptides and proteins there exists a preference for trans' conformation at prolyl residue over cis' when X is a non-glycyl residue. The minima obtained can be useful in modelling studies.
Resumo:
Beta-Lactamase, which catalyzes beta-lactam antibiotics, is prototypical of large alpha/beta proteins with a scaffolding formed by strong noncovalent interactions. Experimentally, the enzyme is well characterized, and intermediates that are slightly less compact and having nearly the same content of secondary structure have been identified in the folding pathway. In the present study, high temperature molecular dynamics simulations have been carried out on the native enzyme in solution. Analysis of these results in terms of root mean square fluctuations in cartesian and [phi, psi] space, backbone dihedral angles and secondary structural hydrogen bonds forms the basis for an investigation of the topology of partially unfolded states of beta-lactamase. A differential stability has been observed for alpha-helices and beta-sheets upon thermal denaturation to putative unfolding intermediates. These observations contribute to an understanding of the folding/unfolding processes of beta-lactamases in particular, and other alpha/beta proteins in general.
Resumo:
The effect of zirconium on the hot working characteristics of alpha and alpha-beta brass was studied in the temperature range of 500 to 850-degrees-C and the strain rate range of 0.001 to 100 s-1. On the basis of the flow stress data, processing maps showing the variation of the efficiency of power dissipation (given by [2m/(m+1)] where m is the strain rate sensitivity) with temperature and strain rate were obtained. The addition of zirconium to alpha brass decreased the maximum efficiency of power dissipation from 53 to 39%, increased the strain rate for dynamic recrystallization (DRX) from 0.001 to 0.1 s-1 and improved the hot workability. Alpha-beta brasses with and without zirconium exhibit a domain in the temperature range from 550 to 750-degrees-C and at strain rates lower than 1 s-1 with a maximum efficiency of power dissipation of nearly 50 % occurring in the temperature range of 700 to 750-degrees-C and a strain rate of 0.001 s-1. In the domain, the alpha phase undergoes DRX and controls the hot deformation of the alloy whereas the beta phase deforms superplastically. The addition of zirconium to alpha-beta brass has not affected the processing maps as it gets partitioned to the beta phase and does not alter the constitutive behavior of the alpha phase
Resumo:
Cross-strand disulfides bridge two cysteines in a registered pair of antiparallel beta-strands. A nonredundant data set comprising 5025 polypeptides containing 2311 disulfides was used to study cross-strand disulfides. Seventy-six cross-strand disulfides were found of which 75 and 1 occurred at non-hydrogen-bonded (NHB) and hydrogen-bonded (HB) registered pairs, respectively. Conformational analysis and modeling studies demonstrated that disulfide formation at HB pairs necessarily requires an extremely rare and positive chi(1) value for at least one of the cysteine residues. Disulfides at HB positions also have more unfavorable steric repulsion with the main chain. Thirteen pairs of disulfides were introduced in NHB and HB pairs in four model proteins: leucine binding protein (LBP), leucine, isoleucine, valine binding protein (LIVBP), maltose binding protein (MBP), and Top7. All mutants LIVBP T247C V331C showed disulfide formation either on purification, or on treatment with oxidants. Protein stability in both oxidized and reduced states of all mutants was measured. Relative to wild type, LBP and MBP mutants were destabilized with respect to chemical denaturation, although the sole exposed NHB LBP mutant showed an increase of 3.1 degrees C in T-m. All Top7 mutants were characterized for stability through guanidinium thiocyanate chemical denaturation. Both exposed and two of the three buried NHB mutants were appreciably stabilized. All four HB Top7 mutants were destabilized (Delta Delta G(0) = -3.3 to -6.7 kcal/mol). The data demonstrate that introduction of cross-strand disulfides at exposed NHB pairs is a robust method of improving protein stability. All four exposed Top7 disulfide mutants showed mild redox activity. Proteins 2011; 79: 244-260. (C) 2010 Wiley-Liss, Inc.
Resumo:
The constitutive behaviour of agr-beta nickel silver in the temperature range 600�850 °C and strainrate range 0.001�100s�1 was characterized with the help of a processing map generated on the principles of the dynamic materials model. On the basis of the flow-stress data, processing maps showing the variation of the efficiency of power dissipation (given by [2m/(m+1)], wherem is the strain-rate sensitivity) with temperature and strain rate were obtained, agr-beta nickel silver exhibits a single domain at temperatures greater than 700 °C and at strain rates lower than 1 s�1 with a maximum efficiency of power dissipation of about 42% occurring at about 850 °C and at 0.1 s�1. In the domain, the agr phase undergoes dynamic recrystallization and controls the deformation of the alloy, while the beta phase deforms superplastically. Optimum conditions for the processing of agr-beta nickel silver are 850 °C and 0.1 s�1. The material undergoes unstable flow at strain rates of 10 and 100 s�1 and in the temperature range 600�750 °C, manifestated in the form of adiabatic shear bands.
Resumo:
The geometries of alpha- and beta-silyl substituted vinyl radicals and of alpha,beta-disilylvinyl radical have been optimised with the STO-3G and the STO-3G* basis sets. The relative stabilities of various conformers have been determined at the UMP2/6-31G* level. The stabilisation of vinyl radicals through alpha-silyl substitution is larger than that due to corresponding alkyl groups. The presence of an alpha-silyl group also leads to a tendency towards linearisation of the vinyl radical centre and a corresponding reduction in the inversion barrier. In marked contrast, the beta-silyl effect is negligible. The geometric, conformational and energetic consequences are insignificant. Overall, the silyl substituent effect at vinyl radicals is very different from that computed earlier for the vinyl cations, but qualitatively similar to that found in carbanions.