250 resultados para antiferromagnetic materials
Resumo:
There have been major advances in solid state and materials chemistry in the last two decades and the subject is growing rapidly. In this account, a few of the important aspects of materials chemistry of interest to the author are presented. Accordingly, transition metal oxides, which constitute the most fascinating class of inorganic materials, receive greater attention, Metal-insulator transitions in oxides, high temperature superconductivity in cuprates and colossal magnetoresistance in manganates are discussed at some length and the outstanding problems indicated, We then discuss certain other important classes of materials which include molecular materials, biomolecular materials and porous solids. Recent developments in synthetic strategies for inorganic materials are reviewed. Some results on metal nanoparticles and nanotubes are briefly presented. The overview, which is essentially intended to provide a flavour of the subject and show how it works, lists references to many crucial reviews in the recent literature.
Resumo:
In the absence of a reliable method for a priori prediction of structure and properties of inorganic solid materials, an experimental approach involving a systematic study of composition, structure and properties combined with chemical intuition based on previous experience is likely to be a viable alternative to the problem of rational design of inorganic materials. The approach is illustrated by taking perovskite lithium-ion conductors as an example.
Resumo:
Nanoparticles of titania were obtained by the controlled hydrolysis of Ti(i-OC3H7)(4) in the reverse micelles of dodecylamine derived from dodecylamine-isopropanol-water solution (water/oil microemulsion). The mesolamellar phase based on titanium nitride (TiN) was obtained by first decomposing TiN atleast partially using the 1:1 solution of acid mixture (HF and HNO3 in the ratio of 9:1) in water and then templating onto the cationic surfactant namely, cetyltrimethylammaniumbromide (abbreviated as CTAB) at 80 degrees C. The synthesis of mesolamellar phase based on TiN involves the charge matched templating approach following the counter-ion mediated pathway. The samples thus obtained were characterized by small angle x-ray diffraction using Cuk(a) radiation, scanning electron microscopy and transmission electron microscopy, which indicated some satisfactory results. (C) 1999 Acta Metallurgica Inc.
Resumo:
The tendency of granular materials in rapid shear flow to form non-uniform structures is well documented in the literature. Through a linear stability analysis of the solution of continuum equations for rapid shear flow of a uniform granular material, performed by Savage (1992) and others subsequently, it has been shown that an infinite plane shearing motion may be unstable in the Lyapunov sense, provided the mean volume fraction of particles is above a critical value. This instability leads to the formation of alternating layers of high and low particle concentrations oriented parallel to the plane of shear. Computer simulations, on the other hand, reveal that non-uniform structures are possible even when the mean volume fraction of particles is small. In the present study, we have examined the structure of fully developed layered solutions, by making use of numerical continuation techniques and bifurcation theory. It is shown that the continuum equations do predict the existence of layered solutions of high amplitude even when the uniform state is linearly stable. An analysis of the effect of bounding walls on the bifurcation structure reveals that the nature of the wall boundary conditions plays a pivotal role in selecting that branch of non-uniform solutions which emerges as the primary branch. This demonstrates unequivocally that the results on the stability of bounded shear how of granular materials presented previously by Wang et al. (1996) are, in general, based on erroneous base states.
Resumo:
A series of 2-haloethoxyethyl cholesteryl ethers has been synthesized. Each material shows attractive liquid-crystalline properties as revealed by differential scanning calorimetry, polarizing microscopy, and temperature-dependence of selective reflection characteristic of the cholesteric mesophase. These are interesting examples of simple, nonpolymeric, single component systems that show the cholesteric mesophase at room temperature.
Resumo:
We report the tuning of oxygen content of La0.5Ca0.5MnO3-y and its effect on electrical transport and magnetic properties. A small reduction of oxygen content leads to a decrease in sample resistivity, which is more dramatic at low temperatures. No significant change is seen to occur in the magnetic properties for this case. Further reduction in the oxygen content increases the resistivity remarkably, as compared to the as-prepared sample. The amplitude of the ferromagnetic (FM) transition at 225 K decreases, and the antiferromagnetic (AFM) transition at 130 K disappears. For samples with y=0.17, insulator-metal transition and paramagnetic-ferromagnetic transition occur around 167 K. The results are explained in terms of the effect of oxygen vacancies on the coexistence of the metallic FM phase and the insulating charge ordered AFM phase.
Resumo:
This is a review of the measurement of I If noise in certain classes of materials which have a wide range of potential applications. This includes metal films, semi-conductors, metallic oxides and inhomogeneous systems such as composites. The review contains a basic introduction to this field, the theories and models and follows it up with a discussion on measurement methods. There are discussions on specific examples of the application of noise spectroscopy in the field of materials science. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Inspired by the exact solution of the Majumdar-Ghosh model, a family of one-dimensional, translationally invariant spin Hamiltonians is constructed. The exchange coupling in these models is antiferromagnetic, and decreases linearly with the separation between the spins. The coupling becomes identically zero beyond a certain distance. It is rigorously proved that the dimer configuration is an exact, superstable ground-state configuration of all the members of the family on a periodic chain. The ground state is twofold degenerate, and there exists an energy gap above the ground state. The Majumdar-Ghosh Hamiltonian with a twofold degenerate dimer ground state is just the first member of the family. The scheme of construction is generalized to two and three dimensions, and illustrated with the help of some concrete examples. The first member in two dimensions is the Shastry-Sutherland model. Many of these models have exponentially degenerate, exact dimer ground states.
Resumo:
The enthalpy increments and the standard molar Gibbs energy of formation of NdFeO3(s) have been measured using a hightemperature Calvet microcalorimeter and a solid oxide galvanic cell, respectively. A lambda-type transition, related to magnetic order-disorder transformation (antiferromagnetic to paramagnetic), is apparent from the heat capacity data at similar to 687 K. Enthalpy increments, except in the vicinity of transition, can be represented by a polynomial expression: {Hdegrees(m)(T)-Hdegrees(m) (298.15 K)} /J(.)mol(-1) (+/- 0.7%)=-53625.6+146.0(T/K) +1.150 X 10(-4)(T/K)(2) +3.007 x 10(6)(T/K)(-1); (298.15 less than or equal to T/K less than or equal to 1000). The heat capacity, the first differential of {Hdegrees(m)(T)-Hdegrees(m)(298.15 K)}with respect to temperature, is given by Cdegrees(pm)/J(.)K(-1.)mol(-1)=146.0+ 2.30x10(-4) (T/K) - 3.007 X 10(6)(T/K)(-2). The reversible emf's of the cell, (-) Pt/{NdFeO3(s) +Nd2O3(s)+Fe(s)}//YDT/CSZ// Fe(s)+'FeO'(s)}/Pt(+), were measured in the temperature range from 1004 to 1208 K. It can be represented within experimental error by a linear equation: E/V=(0.1418 +/- 0.0003)-(3.890 +/- 0.023) x 10(-5)(T/K). The Gibbs energy of formation of solid NdFeO, calculated by the least-squares regression analysis of the data obtained in the present study, and data for Fe0.95O and Nd2O3 from the literature, is given by Delta(f)Gdegrees(m)(NdFeO3 s)/kJ (.) mol(-1)( +/- 2.0)=1345.9+0.2542(T/K); (1000 less than or equal to T/K less than or equal to 1650). The error in Delta(f)Gdegrees(m)(NdFeO3, s, T) includes the standard deviation in emf and the uncertainty in the data taken from the literature. Values of Delta(f)Hdegrees(m)(NdFeO3, s, 298.15 K) and Sdegrees(m) (NdFeO3 s, 298.15 K) calculated by the second law method are - 1362.5 (+/-6) kJ (.) mol(-1) and 123.9 (+/-2.5) J (.) K-1 (.) mol(-1), respectively. Based on the thermodynamic information, an oxygen potential diagram for the system Nd-Fe-O was developed at 1350 K. (C) 2002 Elsevier Science (USA).
Resumo:
Ordered double perovskite oxides of the general formula A2BB′O6 have been known for several decades to have interesting electronic and magnetic properties. However, a recent report of a spectacular negative magnetoresistance effect in a specific member of this family, namely Sr2FeMoO6, has brought this class of compounds under intense scrutiny. It is now believed that the origin of the magnetism in this class of compounds is based on a novel kinetically-driven mechanism. This new mechanism is also likely to be responsible for the unusually high temperature ferromagnetism in several other systems, such as dilute magnetic semiconductors, as well as in various half-metallic ferromagnetic systems, such as Heussler alloys.
Resumo:
Several variants of hydrated sodium cadmium bisulfate, Na(2)Cd(2)(SO(4))(3) center dot 3H(2)O, Na(2)Cd(SO(4))(2) center dot 2H(2)O, and Na(2)Cd(SO(4))(2) center dot 4H(2)O have been synthesized, and their thermal properties followed by phase transitions have been invesigated. The formation of these phases depends on the stochiometry and the time taken for crystallization from water. Na(2)Cd(2)(SO(4))(3)center dot 3H(2)O, which crystallizes in the trigonal system, space group P3c, is grown from the aqueous solution in about four weeks. The krohnkite type mineral Na(2)Cd(SO(4))(2) center dot 2H(2)O and the mineral astrakhanite, also known as blodite, Na(2)Cd (SO(4))(2)center dot 4H(2)O, crystallize concomittantly in about 24 weeks. Both these minerals belong to the monoclinic system(space group P2(1)/c). Na(2)Cd(2)(SO(4))(3)center dot 3H(2)O loses water completely when heated to 250 degrees C and transforms to a dehydrated phase (cubic system, space group I (4) over bar 3d) whose structure has been established using ab initio powder diffration techniques. Na(2)Cd(SO(4))(2)center dot 2H(2)O transforms to alpha-Na(2)Cd(SO(4))(2) (space group C2/c) on heating to 150 degrees C which is a known high ionic conductor and remains intact over prolonged periods of exposure to moisture (over six months). However, when alpha-Na(2)Cd(SO(4))(2) is heated to 570 degrees C followed by sudden quenching in liquid nitrogen beta-Na(2)Cd(SO(4))(2) (P2(1)/c) is formed. beta-Na(2)Cd(SO(4))(2) takes up water from the atmosphere and gets converted completely to the krohnkite type mineral in about four weeks. Further, beta-Na(2)Cd(SO(4))(2) has a conductivity behavior comparable to the a-form up to 280 degrees C, the temperature required for the transformation of the beta- to alpha-form. These experiments demonstrate the possibility of utilizing the abundantly available mineral sources as precursors to design materials with special properties.
Resumo:
A new beam element is developed to study the thermoelastic behavior of functionally graded beam structures. The element is based on the first-order shear deformation theory and it accounts for varying elastic and thermal properties along its thickness. The exact solution of static part of the governing differential equations is used to construct interpolating polynomials for the element formulation. Consequently, the stiffness matrix has super-convergent property and the element is free of shear locking. Both exponential and power-law variations of material property distribution are used to examine different stress variations. Static, free vibration and wave propagation problems are considered to highlight the behavioral difference of functionally graded material beam with pure metal or pure ceramic beams. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
A continuum model based on the critical-state theory of soil mechanics is used to generate stress, density, and velocity profiles, and to compute discharge rates for the flow of granular material in a mass flow bunker. The bin–hopper transition region is idealized as a shock across which all the variables change discontinuously. Comparison with the work of Michalowski (1987) shows that his experimentally determined rupture layer lies between his prediction and that of the present theory. However, it resembles the former more closely. The conventional condition involving a traction-free surface at the hopper exit is abandoned in favour of an exit shock below which the material falls vertically with zero frictional stress. The basic equations, which are not classifiable under any of the standard types, require excessive computational time. This problem is alleviated by the introduction of the Mohr–Coulomb approximation (MCA). The stress, density, and velocity profiles obtained by integration of the MCA converge to asymptotic fields on moving down the hopper. Expressions for these fields are derived by a perturbation method. Computational difficulties are encountered for bunkers with wall angles θw [gt-or-equal, slanted] 15° these are overcome by altering the initial conditions. Predicted discharge rates lie significantly below the measured values of Nguyen et al. (1980), ranging from 38% at θw = 15° to 59% at θw = 32°. The poor prediction appears to be largely due to the exit condition used here. Paradoxically, incompressible discharge rates lie closer to the measured values. An approximate semi-analytical expression for the discharge rate is obtained, which predicts values within 9% of the exact (numerical) ones in the compressible case, and 11% in the incompressible case. The approximate analysis also suggests that inclusion of density variation decreases the discharge rate. This is borne out by the exact (numerical) results – for the parameter values investigated, the compressible discharge rate is about 10% lower than the incompressible value. A preliminary comparison of the predicted density profiles with the measurements of Fickie et al. (1989) shows that the material within the hopper dilates more strongly than predicted. Surprisingly, just below the exit slot, there is good agreement between theory and experiment.