126 resultados para Synthetic Aperture Radar(SAR)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Closed-form expressions for the propagation characteristics of coupled microstrip lines with a symmetrical aperture in the ground plane are derived. Expressions for the regular microstrip coupled lines have been modified using physical insights to incorporate the effect of the aperture. The accuracy of these expressions has been verified by full-wave simulations and compared with conformal mapping analysis. These expressions are accurate within 5% for a substrate whose thickness varies from 0.2 to 1.6mm and permittivity in the range of 210. Designing a broadband filter based on planar multi-conductor coupled lines with aperture in the ground plane is demonstrated in this paper using the proposed expressions for its practical use.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent advances in the generation of synthetic gauge fields in cold atomic systems have stimulated interest in the physics of interacting bosons and fermions in them. In this paper, we discuss interacting two-component fermionic systems in uniform non-Abelian gauge fields that produce a spin-orbit interaction and uniform spin potentials. Two classes of gauge fields discussed include those that produce a Rashba spin-orbit interaction and the type of gauge fields (SM gauge fields) obtained in experiments by the Shanxi and MIT groups. For high symmetry Rashba gauge fields, a two-particle bound state exists even for a vanishingly small attractive interaction described by a scattering length. Upon increasing the strength of a Rashba gauge field, a finite density of weakly interacting fermions undergoes a crossover from a BCS like ground state to a BEC state of a new kind of boson called the rashbon whose properties are determined solely by the gauge field and not by the interaction between the fermions. The rashbon Bose-Einstein condensate (RBEC) is a quite intriguing state with the rashbon-rashbon interactions being independent of the fermion-fermion interactions (scattering length). Furthermore, we show that the RBEC has a transition temperature of the order of the Fermi temperature, suggesting routes to enhance the transition temperatures of weakly interacting superfluids by tuning the spin-orbit coupling. For the SM gauge fields, we show that in a regime of parameters, a pair of particles with finite centre-of-mass momentum is the most strongly bound. In other regimes of centre-of-mass momenta, there is no two-body bound state, but a resonance like feature appears in the scattering continuum. In the many-body setting, this results in flow enhanced pairing. Also, strongly interacting normal states utilizing the scattering resonance can be created opening the possibility of studying properties of helical Fermi liquids. This paper contains a general discussion of the physics of Feshbach resonance in a non-Abelian gauge field, where several novel features such as centre-of-mass-momentum-dependent effective interactions are shown. It is also shown that a uniform non-Abelian gauge field in conjunction with a spatial potential can be used to generate novel Hamiltonians; we discuss an explicit example of the generation of a monopole Hamiltonian.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Catalytic activity of a series of potent amide- and amine-based organoselenium compounds are studied in the presence of various aromatic thiols having electron donating and electron withdrawing substituents on the phenyl ring. This study suggests that the antioxidant activities of the synthetic GPx mimics can be significantly increased by the incorporation of a suitable electron donating group on the phenyl ring of an aromatic thiol.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Comparison of reflectivity data of radars onboard CloudSat and TRMM is performed using coincident overpasses. The contoured frequency by altitude diagrams (CFADs) are constructed for two cases: (a) only include collocated vertical profiles that are most likely to be raining and (b) include all collocated profiles along with cloudy pixels falling within a distance of about 50 km from the centre point of coincidence. Our analysis shows that for both cases, CloudSat underestimates the radar reflectivity by about 10 dBZ compared to that of TRMM radar below 15 km altitude. The difference is well outside the uncertainty value of similar to 2 dBZ of each radar. Further, CloudSat reflectivity shows a decreasing trend while that of TRMM radar an increasing trend below 4 km height. Basically W-band radar that CloudSat flies suffers strong attenuation in precipitating clouds and its reflectivity value rarely exceeds 20 dBZ though its technical specification indicates the upper measurement limit to be 40 dBZ. TRMM radar, on the other hand, cannot measure values below 17 dBZ. In fact combining data from these two radars seems to give a better overall spatial structure of convective clouds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent experiments on fermions in synthetic gauge fields result in systems with a spin-orbit coupling along one spatial axis, a detuning field, and a Zeeman field. We show theoretically that the presence of all three results in interesting and unusual phenomena in a system of interacting fermions (interactions described by a scattering length). For two fermions, bound states appear only over a certain range of the center-of-mass momenta. The deepest bound state appears at a nonzero center-of-mass momentum. For center-of-mass momenta without a bound state, the gauge field induces a resonance-like feature in the scattering continuum resulting in a large scattering phase shift. In the case of many particles, we demonstrate that the system, in a parameter range, shows flow-enhanced pairing, i.e., a Fulde-Farrell-Larkin-Ovchnnikov superfluid state made of robust pairs with a finite center-of-mass momentum. Yet another regime of parameters offers the opportunity to study strongly interacting normal states of spin-orbit-coupled fermionic systems utilizing the resonance-like feature induced by the synthetic gauge field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Low power consumption per channel and data rate minimization are two key challenges which need to be addressed in future generations of neural recording systems (NRS). Power consumption can be reduced by avoiding unnecessary processing whereas data rate is greatly decreased by sending spike time-stamps along with spike features as opposed to raw digitized data. Dynamic range in NRS can vary with time due to change in electrode-neuron distance or background noise, which demands adaptability. An analog-to-digital converter (ADC) is one of the most important blocks in a NRS. This paper presents an 8-bit SAR ADC in 0.13-mu m CMOS technology along with input and reference buffer. A novel energy efficient digital-to-analog converter switching scheme is proposed, which consumes 37% less energy than the present state-of-the-art. The use of a ping-pong input sampling scheme is emphasized for multichannel input to alleviate the bandwidth requirement of the input buffer. To reduce the data rate, the A/D process is only enabled through the in-built background noise rejection logic to ensure that the noise is not processed. The ADC resolution can be adjusted from 8 to 1 bit in 1-bit step based on the input dynamic range. The ADC consumes 8.8 mu W from 1 V supply at 1 MS/s speed. It achieves effective number of bits of 7.7 bits and FoM of 42.3 fJ/conversion-step.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gray water treatment and reuse is an immediate option to counter the upcoming water shortages in various parts of world, especially urban areas. Anaerobic treatment of gray water in houses is an alternative low cost, low energy and low sludge generating option that can meet this challenge. Typical problems of fluctuating VFA, low pH and sludge washout at low loading rates with gray water feedstock was overcome in two chambered anaerobic biofilm reactors using natural fibers as the biofilm support. The long term performance of using natural fiber based biofilms at moderate and low organic loading rates (OLR) have been examined. Biofilms raised on natural fibers (coir, ridge-gourd) were similar to that of synthetic media (PVC, polyethylene) at lower OLR when operated in pulse fed mode without effluent recirculation and achieved 80-90% COD removal at HRT of 2 d showing a small variability during start-up. Confocal microscopy of the biofilms on natural fibers indicated thinner biofilms, dense cell architecture and low extra cellular polymeric substances (EPS) compared to synthetic supports and this is believed to be key factor in high performance at low OLR and low strength gray water. Natural fibers are thus shown to be an effective biofilm support that withstand fluctuating characteristic of domestic gray water. (C) 2013 The Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the Feshbach resonance of spin-1/2 particles in a uniform synthetic non-Abelian gauge field that produces spin-orbit coupling and constant spin potentials. We develop a renormalizable quantum field theory including the closed-channel boson which engenders the resonance. We show that the gauge field shifts the Feshbach field where the low-energy scattering length diverges. In addition the Feshbach field is shown to depend on the center-of-mass momentum of the particles. For high-symmetry gauge fields which produce a Rashba spin coupling, we show that the system supports two bound states over a regime of magnetic fields when the background scattering length is negative and the resonance width is comparable to the energy scale of the spin-orbit coupling. We discuss interesting consequences useful for future theoretical and experimental studies, even while our predictions are in agreement with recent experiments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quantum emulation property of the cold atoms has generated a lot of interest in studying systems with synthetic gauge fields. In this article, we describe the physics of two component Fermi gas in the presence of synthetic non-Abelian SU(2) gauge fields. Even for the non-interacting system with the gauge fields, there is an interesting change in the topology of the Fermi surface by tuning only the gauge field strength. When a trapping potential is used in conjunction with the gauge fields, the non-interacting system has the ability to produce novel Hamiltonians and show characteristic change in the density profile of the cloud. Without trap, the gauge fields act as an attractive interaction amplifier and for special kinds of gauge field configurations, there are two-body bound states for any attraction even in three dimensions. For a many body system, the gauge fields can induce a crossover from a weak superfluid to a strong superfluid with transition temperature as high as the Fermi temperature. The superfluid state obtained for a very large gauge field strength is a superfluid of new kind of bosons, called ``rashbons'', the properties of which are independent of its constituent two component fermions and are solely determined by the gauge field strength. We also discuss the collective excitations over the superfluid ground states and the experimental relevance of the physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Depalladation of the monoalkyne-inserted cyclopalldated guanidines (kappa 2(C,N)Pd(2,6-Me2C5H3N)Br] (I and II) in PhCl under reflux conditions and that of the dialkyne-inserted cyclopalladated guanidine kappa(2)(C,N):eta(2)(C=C)PdBr] (III) in pyridine under reflux conditions afforded a guanidine-containing indole (1), imidaziondole (2), and benzazepine (3) in 80%, 67%, and 76%, yields, respectively. trans-L2PdBr2] species (L = 2,6-Me2C5H3N, C5H5N) were also isolated in the aforementioned reactions in 35%, 42%, and 40% yields. Further , the reaction of the cyclopalladated guanidine kappa(2)(C,N)Pd(mu-Br)](2) (IV) with AgBF4 in a CH2Cl2/MeCN mixture afforded the cationic pincer type cyclopalladated guanidine kappa(3)(C,N,O)Pd(MeCN)]BF4] (4) in 85% yield and this palladacycle upon crystallization in MeCN and the reaction of kappa(2)(C,N)Pd(mu-Br)](2) (V) with AgBf(4) in a CH2Cl2/MeCN mixture afforded the cationic palladacycles {kappa(2)(C,N)Pd(MeCN)(2)]BF4](5 and 6) in 89% and 91% yields, respectively. The separate reactions of 4 with 2 equiv of methyl phenylpropiolate (MPP) or diphenylacetylene (DPA) and the reaction of 5 with 2 equiv of MPP in PhCl at 110 degrees C afforded the guanidine-containing quinazolinium tetrafluoroborate 7 in 25-32% yields. The reaction of 6 with 2 equiv of DPA under otherwise identical conditions afforded the unsymmetrically substituted guanidinium tetrafluoroborate 8, containing a highly substituted naphthalene unit, in 82% yield. Compounds 1-8 were characterized by analytical and spectroscopic techniques, and all compounds except 4 were characterized by single-crystal X-ray diffraction. The Molecular structure of 2 and 3 are nove, as the framework in the former arises due to the formation of two C-N bonds upon depalladation while the butadienyl unit in the latter revealed cis,cis stereochemistry, a-feature unprecedented in alkyne insertion chemistry. Plausible pathways for the formation of heterocycles/carbocycles are proposed. the influence of substitutents on the aryl rings fo the cyclopalladated guanidine moiety and those on alkynes upon the nature of the products in addressed. Heterocycles 1 and 7 revealed the presence of two rotamers in about a 1.00:0.43 ratio in CDCl3 and in about a 1.00:0.14 ratio in CD3OD, respectively, as detected by H-1 NMR spectroscopy while in CD3CN and DMSO-d(6) (1) and CD3CN and CDCl3 (7), these heterocycles revealed the presence of a single rotamer. These spectral features are attributed to the restricted C-N single-bond rotation of the CN3 unit of the guanidine moiety, which possibly arises from steric constraint due to the formation of a N-H center dot center dot center dot Cl hydrogen bond with CDCl3 (1) and N-H center dot center dot center dot O and O-D center dot center dot center dot O hydrogen bonds with CD3OD (7).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tetrahedrite compounds Cu12-xMnxSb4S13 (0 <= x <= 1.8) were prepared by solid state synthesis. A detailed crystal structure analysis of Cu10.6Mn1.4Sb4S13 was performed by single crystal X-ray diffraction (XRD) at 100, 200 and 300 K confirming the noncentrosymmetric structure (space group I (4) over bar 3m) of a tetrahedrite. The large atomic displacement parameter of the Cu2 atoms was described by splitting the 12e site into a partially and randomly occupied 24g site (Cu22) in addition to the regular 12e site (Cu21), suggesting a mix of dynamic and static off-plane Cu2 atom disorder. Rietveld powder XRD pattern and electron probe microanalysis revealed that all the Mn substituted samples showed a single tetrahedrite phase. The electrical resistivity increased with increasing Mn due to substitution of Mn2+ at the Cu1+ site. The positive Seebeck coefficient for all samples indicates that the dominant carriers are holes. Even though the thermal conductivity decreased as a function of increasing Mn, the thermoelectric figure of merit ZT decreased, because the decrease of the power factor is stronger than the decrease of the thermal conductivity. The maximum ZT = 0.76 at 623 K is obtained for Cu12Sb4S13. The coefficient of thermal expansion 13.5 +/- 0.1 x 10(-6) K-1 is obtained in the temperature range from 460 K to 670 K for Cu10.2Mn1.8Sb4S13. The Debye temperature, Theta(D) = 244 K for Cu10.2Mn1.8Sb4S13, was estimated from an evaluation of the elastic properties. The effective paramagnetic moment 7.45 mu(B)/f.u. for Cu10.2Mn1.8Sb4S13 is fairly consistent with a high spin 3d(5) ground state of Mn.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Here, we show that PARP inhibitor-mediated cell death of RAD51C-deficient cells occur by NHEJ-driven illegitimate repair of one-ended double-strand breaks, and the hypomorphic RAD51C pathological mutant cells can be targeted by `synergistic toxicity' induced by low-dose PARP inhibitor and IR.Poly (ADP-ribose) polymerase 1 (PARP1) inhibitors are actively under clinical trials for the treatment of breast and ovarian cancers that arise due to mutations in BRCA1 and BRCA2. The RAD51 paralog RAD51C has been identified as a breast and ovarian cancer susceptibility gene. The pathological RAD51C mutants that were identified in cancer patients are hypomorphic with partial repair function. However, targeting cancer cells that express hypomorphic mutants of RAD51C is highly challenging. Here, we report that RAD51C-deficient cells can be targeted by a `synthetic lethal' approach using PARP inhibitor and this sensitivity was attributed to accumulation of cells in the G(2)/M and chromosomal aberrations. In addition, spontaneous hyperactivation of PARP1 was evident in RAD51C-deficient cells. Interestingly, RAD51C-negative cells exhibited enhanced recruitment of non-homologous end joining (NHEJ) proteins onto chromatin and this accumulation correlated with increased activity of error-prone NHEJ as well as genome instability leading to cell death. Notably, inhibition of DNA-PKcs or depletion of KU70 or Ligase IV rescued this phenotype. Strikingly, stimulation of NHEJ by low dose of ionizing radiation (IR) in the PARP inhibitor-treated RAD51C-deficient cells and cells expressing pathological RAD51C mutants induced enhanced toxicity `synergistically'. These results demonstrate that cancer cells arising due to hypomorphic mutations in RAD51C can be specifically targeted by a `synergistic approach' and imply that this strategy can be potentially applied to cancers with hypomorphic mutations in other homologous recombination pathway genes.