304 resultados para Room-temperature ferromagnetism


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The effect of deposition temperature on residual stress evolution with temperature in Ti-rich NiTi films deposited on silicon substrates was studied. Ti-rich NiTi films were deposited on 3? Si (100) substrates by DC magnetron sputtering at three deposition temperatures (300, 350 and 400 degrees C) with subsequent annealing in vacuum at their respective deposition temperatures for 4 h. The initial value of residual stress was found to be the highest for the film deposited and annealed at 400 degrees C and the lowest for the film deposited and annealed at 300 degrees C. All the three films were found to be amorphous in the as-deposited and annealed conditions. The nature of the stress response with temperature on heating in the first cycle (room temperature to 450 degrees C) was similar for all three films although the spike in tensile stress, which occurs at similar to 330 degrees C, was significantly higher in the film deposited and annealed at 300 degrees C. All the films were also found to undergo partial crystallisation on heating up to 450 degrees C and this resulted in decrease in the stress values around 5560 degrees C in the cooling cycle. The stress response with temperature in the second thermal cycle (room temperature to 450 degrees C and back), which is reflective of the intrinsic film behaviour, was found to be similar in all cases and the elastic modulus determined from the stress response was also more or less identical. The three deposition temperatures were also not found to have a significant effect on the transformation characteristics of these films such as transformation start and finish temperatures, recovery stress and hysteresis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Two copper-containing compounds [Cu(3)(mu(3)-OH)(2)-(H(2)O)(2){(SO(3))-C(6)H(3)-(COO)(2)}(CH(3)COO)] , I, and [Cu(5)(mu(3)-OH)(2)(H(2)O)(6){(NO(2))-C(6)H(3)-(COO)(2)}(4)]center dot 5H(2)O, II, were prepared using sulphoisophthalic and nitroisophthalic acids. The removal of the coordinated water molecules in the compounds was investigated using in situ single crystal to single crystal (SCSC) transformation studies, temperature-dependent powder X-ray diffraction (PXRD), and thermogravimetric analysis (TGA). The efficacy of SCSC transformation studies were established by the observation of dimensionality cross-over from a two-dimensional (I) to a three-dimensional structure, Cu(6)(mu(3)-OH)(4){(SO(3))-C(6)H(3)-(COO)(2)}(2)(CH(3)COO)(2), Ia, during the removal of the coordinated water molecules. Compound H exhibited a structural reorganization forming Cu(5)(mu(2)-OH)(2){(NO(2))C(6)H(3)-(COO)(2))(4)], Ha, possessing trimeric (Cu(3)O(12)) and dimeric (Cu(2)O(8)) copper clusters. The PXRD studies indicate that the three-dimensional structure (Ia) is transient and unstable, reverting back to the more stable two-dimensional structure (I) on cooling to room temperature. Compound Ha appears to be more stable at room temperature. The rehydration/dehydration studies using a modified TGA setup suggest complete rehydration of the water molecules, indicating that the water molecules in both compounds are labile. A possible model for the observed changes in the structures has been proposed. Magnetic studies indicate changes in the exchanges between the copper centers in Ha, whereas no such behavior was observed in Ia.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Rapid solidification of Ag‐53 at. % Se alloy resulted in the formation of a composite mixture of Ag2.5Se and Se. The microstructure consists of spherical Se grains of 2–20 μm size, randomly distributed in a matrix of Ag2.5 Se. The Se grains were found to be layered hexagonal while the Ag2.5 Se had an orthorhombic crystal structure. The unit cell size of this phase, however, was twice that reported for the equilibrium orthorhombic Ag2 Se compound. The conductivity σ variation with temperature in the range 80–320 K was found to be similar to that observed in degenerate semiconductors. The σ decreased from 295 Ω−1 cm−1 at room temperature to a saturation value of 70 Ω−1 cm−1 for temperatures <80 K. The results are discussed in terms of percolation conduction in the Ag2.5 Se phase.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The thermal expansion of magnesium oxide has been measured below room temperature from 140°K to 284.5°K, using an interferometric method. The accuracy of measurement is better than 3% in the temperature range studied. The agreement of these results with Durand's is quite good, but consistently higher over most of the range by 2 or 3%, for the most part within the estimated experimental error. The Grüneisen parameter remains constant at about 1.51 over the present experimental range; but an isolated measurement of Durand at 85°K suggests that at lower temperatures it rises quite sharply above this value. This possibility is therefore investigated theoretically. With a non-central force model to represent MgO, γ(−3) and γ(2) are calculated and it is found that γ(−3) > γ(2), again suggesting that the Grüneisen parameter increases with falling temperature. Of the two reported experimental values for the infra-red absorption frequency, correlation with the heat capacity strongly indicates a wavelength of 25.26μm rather than 17.3μm. Thermal expansion measurements at still lower temperatures must be carried out to confirm definitely the rise in the Grüneisen parameter.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

An equimolar mixture of Ni(NO(3))(2)center dot 6H(2)O and pyridine-2-aldehyde with two equivalents of NaN(3) in methanol in the presence of NaOMe resulted in the formation of light green precipitate which upon crystallization from dimethylformamide (DMF) yielded light green single crystals [{Ni(2)Na(2)(pic)(4)(N(3))(2)(H(2)O)(2)(MeOH)}center dot MeOH center dot 3H(2)O](n) (1) and [{Ni(2)Na(2)(pic)(4)(N(3))(2)(H(2)O)(4)}center dot 2DMF center dot H(2)O](n) (2) (pic = pyridine-2-carboxylate) at room temperature and high temperature (100 degrees C), respectively. Variable temperature magnetic studies revealed the existence of overall ferromagnetic behaviour with J approximate to + 10 cm(-1) and D approximate to -2 to -7 cm(-1) for 1 and 2, respectively. Negative D values as well as variation of D upon slight distortion of structure by varying reaction temperature were observed. The X-band Electron Paramagnetic Resonance (EPR) spectra of both 2 and 3 were recorded below 50 K. The structural distortion was also implicated from the EPR spectra. Density Functional Theory (DFT) calculations on both complexes were performed in two different ways to corroborate the magnetic results. Considering only Ni(2)(II) dimeric unit, results were J = + 20.65 cm(-1) and D = -3.16 cm(-1) for 1, and J = +24.56 cm(-1) and D = -4.67 cm(-1) for 2. However, considering Ni(2)(II)Na(2)(I) cubane as magnetic core the results were J = +16.35 cm(-1) (1), +19.54 cm(-1) (2); D = -3.05 cm(-1) (1), -4.25 cm(-1) (2).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

pplication of pulsed plasma for gas cleaning is gaining prominence in recent years mainly from the energy consideration point of view. Normally, gas treatment is carried out, at or above room temperature, by a conventional dry type corona reactor. However, this treatment is still inadequate in the removal of certain stable gases present in the exhaust/flue gas mixture. The authors report some interesting results of the treatment of such stable gases with pulsed plasma at very low ambient temperature. Also reported in the paper is an improvement in DeNO/DeNOx efficiency using unconventional wet-type reactors, designed and fabricated by the authors, operating at different ambient temperatures. Apart from laboratory tests on simulated gas mixtures, field tests were also carried out on the exhaust gas of a 8 kW diesel engine. Further, an attempt was made to test the feasibility of a helical wire as a corona electrode in place of the conventional straight wire electrode. A comparative analysis of the various tests is presented together with a note on the energy consideration

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Application of non-thermal plasma for gas cleaning is gaining prominence in the recent years. Normally, the gas treatment was carried out at or above room temperature, by the dry type plasma reactor. However, this treatment is still inadequate in the removal of certain stable gases present in the flue gas mixture. We propose the non-thermal plasma process at very low temperature, and report here some interesting results of treatment of NO or N2O with pulsed plasma below — 100°C ambient temperature. Direct methanol synthesis from CH4 and CO2 at very low temperature is also reported. A comparative analysis of the various tests are presented together with a note on the energy consideration

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Application of pulsed plasma for gas cleaning is gaining prominence in recent years mainly from the energy consideration point of view. Normally, gas treatment is carried out, at or above room temperature, by a conventional dry type corona reactor. However, this treatment is still inadequate in the removal of certain stable gases present in the exhaust/flue gas mixture. The authors report some interesting results of the treatment of such stable gases with pulsed plasma at very low ambient temperature. Also reported in the paper is an improvement in DeNO/DeNOx efficiency using unconventional wet-type reactors, designed and fabricated by the authors, operating at different ambient temperatures. Apart from laboratory tests on simulated gas mixtures, field tests were also carried out on the exhaust gas of a 8 kW diesel engine. Further, an attempt was made to test the feasibility of a helical wire as a corona electrode in place of the conventional straight wire electrode. A comparative analysis of the various tests is presented together with a note on the energy consideration

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Application of non-thermal plasma for gas cleaning is gaining prominence in the recent years. Normally, the gas treatment was carried out at or above room temperature, by the dry type plasma reactor. However, this treatment is still inadequate in the removal of certain stable gases present in the flue gas mixture. We propose the non-thermal plasma process at very low temperature, and report here some interesting results of treatment of NO or N2O with pulsed plasma below — 100°C ambient temperature. Direct methanol synthesis from CH4 and CO2 at very low temperature is also reported. A comparative analysis of the various tests are presented together with a note on the energy consideration

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A novel non-metal catalyzed oxidation of organic azides to nitriles under solvent-free conditions is presented employing catalytic amounts of KI, and DABCO in aq. TBHP at room temperature. This nonmetal catalyzed oxidation of azides provides good selectivity as double and triple bonds were not oxidized under the present reaction conditions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The composites consisting of amorphous matrix reinforced with crystalline dendrites offer extraordinary combinations of strength, stiffness, and toughness and can be processed in bulk. Hence, they have been receiving intense research interest, with a primary focus to study their mechanical properties. In this paper, the temperature and strain rate effects on the uniaxial compression response of a tailored bulk metallic glass (BMG) composite has been investigated. Experimental results show that at temperatures ranging between ambient to 500 K and at all strain rates; the onset of plastic deformation in the composite is controlled by that in the dendrites. As the temperature is increased to the glass transition temperature of the matrix and beyond, flow in the amorphous matrix occurs readily and hence it dictates the composite's response. The role of the constituent phases in controlling the deformation mechanism of the composite has been verified by assessing the strain rate sensitivity and the activation volume for deformation. The composite is rate sensitive at room temperature with values of strain rate sensitivity and activation volume being similar to that of the dendrites. At test temperatures near to the glass transition temperature, the composite however becomes rate-insensitive corresponding to that of the matrix phase. At low strain rates, serrated flow akin to that of dynamic strain ageing in crystalline alloys was observed and the serration magnitude decreases with increasing temperature. Initiation of the shear bands at the dendrite/matrix interface and propagation of them through the matrix ligaments until their arrest at another interface is the responsible mechanism for this. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper, the low temperature electrical conductivity and microwave absorption properties of carbon coated iron nanoparticles-polyvinyl chloride composite films are investigated for different filler fractions. The filler particles are prepared by the pyrolysis of ferrocene at 980 degrees C and embedded in polyvinyl chloride matrix. The high resolution transmission electron micrographs of the filler material have shown a 5 nm thin layer graphitic carbon covering over iron particles. The room temperature electrical conductivity of the composite film changes by 10 orders of magnitude with the increase of filler concentration. A percolation threshold of 2.2 and an electromagnetic interference shielding efficiency (EMI SE) of similar to 18.6 dB in 26.5-40 GHz range are observed for 50 wt% loading. The charge transport follows three dimensional variable range hopping conduction. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A chemoselective reduction of olefins and acetylenes is demonstrated by employing catalytic amounts of ferric chloride hexahydrate (FeCl3 center dot 6H(2)O) and aqueous hydrazine (NH2NH2 center dot H2O) as hydrogen source at room temperature. The reduction is chemoselective and tolerates a variety of reducible functional groups. Unlike other metal-catalysed reduction methods, the present method employs a minimum amount of aqueous hydrazine (1.5-2 equiv.). Also, the scope of this method is demonstrated in the synthesis of ibuprofen in aqueous medium.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Sr2SbMnO6 (SSMO) ceramics were, fabricated using the nanocrystalline powders obtained via molten salt synthesis (MSS) method. High temperature X-ray diffraction studies confirmed the structural phase transition (room temperature tetragonal (I4/mcm) to the cubic phase (Pm-3m)) temperature to be around 736K. The discontinuity in the phase transition indicated its first order nature reflecting the presence of ferroelectric-like distortions in SSMO prepared from MSS which seemed to be unique as it was not observed so far in the case of SSMO prepared using solid-state reaction method. The dielectric behavior of SSMO was studied in the 300-950 K temperature range at high frequencies (MHz range) in order to suppress the of space charge and related effects that dominate at such higher temperatures and mask the real phase transition.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

More than 70 molecules of varied nature have been identified in the envelopes of carbon-rich stars through their spectral fingerprints in the microwave or far infrared regions. Many of them are carbon chain molecules and radicals, and a significant number are unique to the circumstellar medium. The determination of relevant laboratory kinetics data is critical to keep up with the development of the high spectral and spatial resolution observations and of the refinement of chemical models. Neutralneutral reactions of the CN radical with unsaturated hydrocarbons could be a dominant route in the formation of cyanopolyynes, even at low temperatures and deserve a detailed laboratory investigation. The approach we have developed aims to bridge the temperature gap between resistively heated flow tubes and shock tubes. The present kinetic measurements are obtained using a new reactor combining a high-enthalpy source with a flow tube and a pulsed laser photolysislaser-induced fluorescence system to probe the undergoing chemical reactions. The high-enthalpy flow tube has been used to measure the rate constant of the reaction of the CN radical with propane (C3H8), propene (C3H6), allene (C3H4), 1,3-butadiene (1,3-C4H6), and 1-butyne (C4H6) over a temperature range extending from 300 to 1200 K. All studied reactions of CN with unsaturated hydrocarbons are rapid, with rate coefficients greater than 10-10 cm3 center dot molecule-1 center dot s-1 and exhibit slight negative temperature dependence above room temperature. (c) 2012 Wiley Periodicals, Inc. Int J Chem Kinet 44: 753766, 2012