113 resultados para Pericles, approximately 495 B.C.-429 B.C.
Resumo:
Hexagonal Ln(2)CuTiO(6) (Ln = Y, Dy, Ho, Er, and Yb) exhibits a rare combination of interesting dielectric properties, in the form of relatively large dielectric constants (epsilon' > 30), low losses, and extremely small temperature and frequency dependencies, over large ranges of temperature and frequency Choudhury et al., Appl. Phys. Lett. 96, 162903 (2010) and Choudhury et al., Phys. Rev. B 82, 134203 (2010)], making these compounds promising as high-k dielectric materials. The authors present a brief review of the existing literature on this interesting class of oxides, complimenting it with spectroscopic data in conjunction with first-principles calculation results, revealing a novel mechanism underlying these robust dielectric properties. These show that the large size differences in Cu2+ and Ti4+ at the B-site, aided by an inherent random distribution of CuO5 and TiO5 polyhedral units, frustrates the ferroelectric instability, inherent to the noncentrosymmetric P6(3) cm space group of this system, and gives rise to the observed relatively large dielectric constant values. Additionally, the phononic contributions to the dielectric constant are dominated primarily by mid-frequency (>100 cm(-1)) polar modes, involving mainly Ti4+ 3d(0) ions. In contrast, the soft polar phonon modes with frequencies typically less than 100 cm(-1), usually responsible for dielectric properties of materials, are found to be associated with non-d(0) Cu2+ ions and to contribute very little, giving rise to the remarkable temperature stability of dielectric properties of these compounds. (C) 2014 American Vacuum Society.
Resumo:
The total synthesis of new indole alkaloids henrycinol A and B were accomplished starting from L-tryptophan methyl ester. The key step is a stereochemically flexible Pictet-Spengler reaction governed by the presence or absence of an N-allyl group in the tryptophan precursor. The natural products henrycinol A and B were synthesized in good overall yield in eight and nine steps, respectively. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Lagunamides, isolated from a marine cyanobacterium Lyngbya majuscule found in Singapore, showed very potent activities against Plasmodium falciparum and murine leukemia cell line (P388). Herein, a concise synthetic approach toward the total synthesis of a lagunamide B analogue is discussed. Macrolactonization, HWE-olefination, and modified Crimmin's aldol are some of the key reactions featured in this synthesis. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Bent-core mesogens are an important class of thermotropic liquid crystals as they exhibit unusual properties as well as morphologies distinctly different from rodlike mesogens. Two bent-core mesogens with differing center rings namely benzene and thiophene are considered and investigated using high-resolution oriented solid state C-13 NMR method in their liquid crystalline phases. The mesogens exhibit different phase sequences with the benzene-based mesogen showing a B-1 phase, while the one based on thiophene showing nematic and smectic C phases. The 2-dimensional separated local field (2D-SLF) NMR method was used to obtain the C-13-H-1 dipolar couplings of carbons in the center ring as well as in the side-wing phenyl rings. Couplings, characteristic of the type of the center ring, that also provide orientational information on the molecule in the magnetic field were observed. Together with the dipolar couplings of the side-wing phenyl ring carbons from which the local order parameters of the different subunits of the core could be extracted, the bent angle of the mesogenic molecule could be obtained. Accordingly, for the benzene mesogen in its B-1 phase at 145 degrees C, the center ring methine C-13-H-1 dipolar couplings were found to be significantly larger (9.5-10.2 kHz) compared to those of the side-wing rings (1.6-2.1 kHz). From the local order parameter values of the center (0.68) as well as the side-wing rings (0.50), a bent-angle of 130.3 degrees for this mesogen was obtained. Interestingly, for the thiophene mesogen in its smectic C phase at 210 degrees C, the C-13-H-1 dipolar coupling of the center ring methine carbon (2.11 kHz) is smaller than those of the side-wing phenyl ring carbons (2.75-3.00 kHz) which is a consequence of the different structures of the thiophene and the benzene rings. These values correspond to local order parameters of 0.85 for the center thiophene ring and 0.76 for the first side-wing phenyl ring and a bent-angle of 149.2 degrees. Thus, the significant differences in the dipolar couplings and the order parameter values between different parts in the rigid core of the mesogens are a direct consequence of the nature of the center ring and the bent structure of the molecule. The present investigation thus highlights the ability of the C-13 2D-SLF technique to provide the geometry of the bent-core mesogens in a straightforward manner through the measurement of the C-13-H-1 dipolar couplings.
Resumo:
Plastic deformation and strength of Ti-6Al-4V (Ti64) alloyed with minor additions of B at cryogenic temperatures were investigated through unnotched and notched tensile tests at 20 and 77 K Marked microstructural refinement that occurs with the trace addition of B to Ti64 was exploited for examining the role of microstructural length scales on the cryogenic plastic deformation. The tensile tests were complemented with detailed microstructural characterisation using transmission electron microscopy and electron back scattered diffraction imaging of the deformed specimens. Experimental results show that the addition of 0.30 wt% and above of B to Ti64 reduces ductility, and in turn enhances the notch sensitivity to the extent that those alloys become unsuitable for low temperature applications. However, the addition of similar to 0.10 wt% B is beneficial in enhancing the low temperature strength. An examination of the yield strength variation at various temperatures reveals that at 77 K, the colony size determines the yield strength of the alloy, just as it does at room temperature; implying dislocation-mediated plasticity continues to dominate up to 77 K At 20 K however, twinning dominates the flow response, with the activation of {11 (2) over bar1} and {5 (6) over bar1 (3) over bar} twinning in addition to {10 (1) over bar2} in the base alloy resulting in enhanced ductility of it as compared to either B-modified alloys at 20 K or the base alloy itself at 77 K The observation of a reasonable correlation between the lath aspect ratio, given by the colony-to-lath thickness ratios, and yield strength variation at 20 K suggests that coarse colony size in the base alloy allows for the activation of additional twinning mechanisms. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
The cytotoxic activity of a new series of 2-(4'-chlorobenzyl)-5,6-disubstituted imidazo2,1-b]1,3,4]wthiadiazoles against different human and murine cancer cell lines is reported. Among the tested compounds, two derivatives namely 2-(4-chlorobenzyl)-6-(2-oxo-2H-chromen-3-yl)imidazo2,1-1)]1,3,4]th iadiazole-5-carbaldehyde 4i and 2-(4-chlorobenzyl)-6-(2-oxo-2H-chromen-3-ypimidazo2,1-1)]1,3,4]thi adiazol-5-yl thiocyanate 5i emerged as the most potent against all the cell lines. To investigate the mechanism of action, we selected compounds 4i for cell cycle study, analysis of mitochondrial membrane potential and Annexin V-FITC flow cytometric analysis and DNA fragmentation assay. Results showed that 4i induced cytotoxicity by inducing apoptosis without arresting the cell cycle. (C) 2014 Elsevier Masson SAS. All rights reserved.
Resumo:
Molecules in their liquid crystalline phase undergo rotational motion about the long axis of the molecule and the shape adopted by the rotating molecule plays an important role in influencing the mesophase morphology. In this context, obtaining the topology and the relative orientation of the different sub-units are important steps. For studying the liquid crystalline phase, C-13 NMR spectroscopy is a convenient method and for certain specifically designed nematogens, 2-dimensional separated local field (2D-SLF) NMR spectroscopy provides a particularly simple and straightforward means of arriving at the molecular topology. We demonstrate this approach on two three ring based nematogens designed with a phenyl or a thiophene ring at one of the termini. From the C-13-H-1 dipolar couplings of the terminal carbon obtained using the 2D-SLF NMR technique, the order parameter of the local symmetry axis of the terminal phenyl ring as well as of the long molecular axis could be easily estimated. For the thiophene nematogen, the lack of symmetry of the thiophene moiety necessitates some additional computational steps. The results indicate that the thiophene unit has its local ordering axis oriented away from the long molecular axis by a small angle, consistent with a bent structure expected in view of the thiophene geometry. The experiment also demonstrates the ability of 2D-SLF NMR to provide high resolution spectra by separation of several overlapped resonances in terms of their C-13-H-1 dipolar couplings. The results are consistent with a rod-like topology of the core of the investigated mesogens. The investigation demonstrates the potential of 2D-SLF NMR C-13 spectroscopy for obtaining atomistic level information and its utility for topological studies of different mesogens.
Resumo:
A series of 2,5,6-substituted imidazo2,1-b]1,3,4]thiadiazole derivatives have been prepared and were tested for antiproliferative activity on cancer cells at the National Cancer Institute. Results showed that molecules with a benzyl group at position 2, exhibited an increase in activity for the introduction of a formyl group at the 5 position. The compound 2-benzyl-5-formyl-6-(4-bromophenyl)imidazo 2,1-b]1,3,4]thiadiazole 22 has been chosen for understanding the mechanism of action by various molecular and cellular biology studies. Results obtained from cell cycle evaluation analysis, analysis of mitochondrial membrane potential and Annexin V-FITC by flow cytometric analysis, ROS production and expression of apoptotic and DNA-repair proteins suggested that compound 22 induced cytotoxicity by activating extrinsic pathway of apoptosis, however, without affecting cell cycle progression. (C) 2014 Elsevier Ltd. All rights reserved.