219 resultados para PD


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We demonstrate a new and simple route to fabricate highly dense arrays of hexagonally close packed inorganic nanodots using functional diblock copolymer (PS-b-P4VP) thin films. The deposition of pre-synthesized inorganic nanoparticles selectively into the P4VP domains of PS-b-P4VP thin films, followed by removal of the polymer, led to highly ordered metallic patterns identical to the order of the starting thin film. Examples of Au, Pt and Pd nanodot arrays are presented. The affinity of the different metal nanoparticles towards P4VP chains is also understood by extending this approach to PS-b-P4VP micellar thin films. The procedure used here is simple, eco-friendly, and compatible with the existing silicon-based technology. Also the method could be applied to various other block copolymer morphologies for generating 1-dimensional (1D) and 2-dimensional (2D) structures. (c) 2010 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Colloid of palladium nanoparticles has been prepared by the Solvated Metal Atom Dispersion (SMAD) method. Reaction of Pd(0) nanopowder obtained upon precipitation from the colloid, with ammonia borane (H3N center dot BH3, AB) in aqueous solutions at room temperature results in the generation of active hydrogen atoms. The active hydrogen atoms either combine with one another resulting in H-2 evolution or diffuse into the Pd lattice to afford PdHx. Diffusion of hydrogen atoms leads to an expansion of the Pd lattice. The diffused hydrogen atoms are distributed uniformly over the entire particle. These features were established using powder XRD and electron microscopy studies. The H-1 NMR spectral studies of PdHx before and after desorption of H-2 revealed that the hydrogen atoms trapped inside Pd lattice are hydridic in nature. Desorption of hydrogen from PdHx did not result in complete reversibility suggesting that some hydrogen atoms are strongly trapped inside the Pd lattice. (C) 2010 Professor T. Nejat Veziroglu. Published by Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Reactions of N,N′-n-propylene-bis(acetylacetoneimino) metal (II), M[n-P-(AI)2], where M=Ni(II) or Pd(II), with nitrosating reagents have been investigated. Mono- and di-nitrosated complexes were obtained selectively, depending upon the concentration of the nitrosating reagents and the reaction time. In both the cases, the γ-CH group is transformed to an ambidentate isonitroso group (>C=NOH), which coordinates to the metal ion by dislodging the already coordinated carbonyl group. The factors influencing the mode of binding of the isonitroso group have been discussed. The bromination reactions of the mono-nitrosated products of M[n-P-(AI)2] and Pd (II) complexes, Pd [E/i-P-(AI)2], where E/i-P-(AI)2 is a dianion of ethylene/i-propylene-bis (acetylacetoneimine), are also reported. The reaction products have been characterized by elemental analyses, electrical conductivity molecular weight determination, and ir, pmr and electronic spectral data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Reactions of bis(isonitrosoethylacetoacetato)palladium(II), Pd(IEAA)2,with straight chain non-bulky alkylamines, RNH2(R = CH3, C2H5, n-C3H7or n-C4H9) in the mole ratio 1:1 gave bis (B-alkylisonitrosoethylacetoacetateimino)Palladium(II), Pd(R-IEAI)2. In this reaction the coordinated carbonyl groups of Pd(IEAA)2 undergo condensation with amines fo rming Schiff bases (>CNR). On the other hand, the reactions of Pd(IEAA)2 with a large excess of amine yielded N-alkylamido bridgedisonitrosoethylacetoacetatedipalladium(II), μ-(NHR)2[Pd(IEAA)]2 complexes. The complexes are characterized by elemental analyses, magnetic susceptib ility, i.r., p.m.r. and in some cases, nitrogen 1s X-ray photoelectron and mass spectral studies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Individual carbon nanotubes being substantially smaller than the wavelength of light, are not much responsive to optical manipulation. Here we demonstrate how decorating single-walled carbon nanotubes with palladium particles makes optical trapping and manipulation easier. Palladium decorated nanotubes (Pd/SWNTs) have higher effective dielectric constant and are trapped at much lower laser power level with greater ease. In addition, we report the transportation of Pd/SWNTs using an asymmetric line trap. Using this method carbon nanotubes can be transported in any desired direction with high transportation speed. (c) 2006 Optical Society of America.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oxygen storage/release (OSC) capacity is an important feature common to all three-way catalysts to combat harmful exhaust emissions. To understand the mechanism of improved OSC for doped CeO2, we undertook the structural investigation by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), H-2-TPR (temperature-programmed hydrogen reduction) and density functional theoretical (DFT) calculations of transition-metal-, noble-metal-, and rare-earth (RE)-ion-substituted ceria. In this report, we present the relationship between the OSC and structural changes induced by the dopant ion in CeO2. Transition metal and noble metal ion substitution in ceria greatly enhances the reducibility of Ce1-xMxO2-delta (M = Mn, Fe, Co, Ni, Cu, Pd, Pt, Ru), whereas rare-earth-ion-substituted Ce(1-x)A(x)O(2-delta) (A = La, Y) have very little effect in improving the OSC. Our simulated optimized structure shows deviation in cation oxygen bond length from ideal bond length of 2.34 angstrom (for CeO2). For example, our theoretical calculation for Ce28Mn4O62 structure shows that Mn-O bonds are in 4 + 2 coordination with average bond lengths of 2.0 and 3.06 angstrom respectively. Although the four short Mn-O bond lengths spans the bond distance region of Mn2O3, the other two Mn-O bonds are moved to longer distances. The dopant transition and noble metal ions also affects Ce coordination shell and results in the formation of longer Ce-O bonds as well. Thus longer cation oxygen bonds for both dopant and host ions results in enhanced synergistic reduction of the solid solution. With Pd ion substitution in Ce1-xMxO2-delta (M = Mn, Fe, Co, Ni, Cu) further enhancement in OSC is observed in H-2-TPR. This effect is reflected in our model calculations by the presence of still longer bonds compared to the model without Pd ion doping. The synergistic effect is therefore due to enhanced reducibility of both dopant and host ion induced due to structural distortion of fluorite lattice in presence of dopant ion. For RE ions (RE = Y, La), our calculations show very little deviation of bonds lengths from ideal fluorite structure. The absence of longer Y-O/La-O and Ce-O bonds make the structure much less susceptible to reduction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nanocrystalline Ce1-xFexO2-delta (0 <= x <= 0.45) and Ce0.65Fe0.33Pd0.02O2-delta of similar to 4 nm sizes were synthesized by a sonochemical method using diethyletriamine (DETA) as a complexing agent. Compounds were characterized by powder X-ray diffraction (XRD), X-ray photo-electron spectroscopy (XPS) and transmission electron microscopy (TEM). Ce1-xFexO2-delta (0 <= x <= 0.45) and Ce0.65Fe0.33Pd0.02O2-delta crystallize in fluorite structure where Fe is in +3, Ce is in +4 and Pd is in +2 oxidation state. Due to substitution of smaller Fe3+ ion in CeO2, lattice oxygen is activated and 33% Fe substituted CeO2 i.e. Ce0.67Fe0.33O1.835 reversibly releases 0.31O] up to 600 degrees C which is higher or comparable to the oxygen storage capacity of CeO2-ZrO2 based solid solutions (Catal. Today 2002, 74, 225-234). Due to interaction of redox potentials of Pd2+/0(0.89 V) and Fe3+/2+ (0.77 V) with Ce4+/3+ (1.61 V), Pd ion accelerates the electron transfer from Fe2+ to Ce4+ in Ce0.65Fe0.33Pd0.02O1.815, making it a high oxygen storage material as well as a highly active catalyst for CO oxidation and water gas shift reaction. The activation energy for CO oxidation with Ce0.65Fe0.33Pd0.02O1.815 is found to be as low as 38 kJ mol(-1). Ce0.67Fe0.33O1.835 and Ce0.65Fe0.33Pd0.02O1.815 have also shown high activity for the water gas shift reaction. CO conversion to CO2 is 100% H-2 specific with these catalysts and conversion rate was found to be as high 27.2 mu moles g(-1) s(-1) and the activation energy was found to be 46.4 kJ mol(-1) for Ce0.65Fe0.33Pd0.02O1.815.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The free-base octabromotetraphenylporphyrin (H2OBP) has been prepared by a novel bromination reaction of (meso-tetraphenylporphyrinato)copper(II). The metal [V(IV)O, Co(II), Ni(II), Cu(II), Zn(II), Pd(II), Ag(II), Pt(II)] derivatives exhibit interesting electronic spectral features and electrochemical redox properties. The electron-withdrawing bromine substituents at the pyrrole carbons in H2OBP and M(OBP) derivatives produce remarkable red shifts in the Soret (50 nm) and visible bands (100 nm) of the porphyrin. The low magnitude of protonation constants (pK3 = 2.6 and pK4 = 1.75) and the large red-shifted Soret and visible absorption bands make the octabromoporphyrin unique. The effect of electronegative bromine substituents at the peripheral positions of the porphyrin has been quantitatively analyzed by using the four-orbital approach of Gouterman. A comparison of MO parameters of MOBP derivatives with those of the meso-substituted tetraphenylporphyrin (M(TPP)) and unsubstituted porphine (M(P)) derivatives provides an explanation for the unusual spectral features. The configuration interaction matrix element of the M(OBP) derivatives is found to be the lowest among the known substituted porphyrins, indicating delocalization of ring charge caused by the increase in conjugation of p orbitals of the bromine onto the ring orbitals. The electron-transfer reactivities of the porphyrins have been dramatically altered by the peripheral bromine substituents, producing large anodic shifts in the ring and metal-centered redox potentials. The increase in anodic shift in the reduction potential of M(OBP)s relative to M(TPP)s is found to be large (550 mV) compared to the shift in the oxidation potential (300 mV). These shifts are interpreted in terms of the resonance and inductive interactions of the bromine substituents.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Reactions of [PdIVB-(AI)2]++ [PdIICl4]-- (i) B-(AI)2 = dianion of N,N'-ethylene-/i-propylene-/n-propylene-bis(acetyl-acetoneimine) with some π-acceptor ligands, aliphatic primary amines and nitrosating reagents have been investigated. In all these reactions except nitrosation, 1:1 adducts having the formula, [PdIVB-(AI)2.X] [PdIICl4] [X = triphenylphosphine (TPP), triphenylarsine (TPA), pyridine (Py), methylamine (CH3NH2) or ethylamine (C2H5NH2)] are obtained. The formation of these complexes is associated with a bond isomerization - from Pd-Cxo-π -allylic bond prevailing in [PdIVB-(AI)2]2+ to PdIV-O bonding.Reaction of (i) with nitrosating reagents reduces PdIV to PdII and subsequently transform the γ-CH group, into an ambidentate isonitroso group (°C = NOH). The latter enters into coordination with PdII by dislodging the already coordinated carbonyl group. Further, selective nitrosation (mono- and dinitrosation) has been carried out by controlling the amount of the nitrosating reagent and the reaction time. The complexes have been characterized by elemental analyses, electrical conductivity, magnetic susceptibility and ir spectral data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The high-temperature superconductors are complex oxides, generally containing two-dimensional CuO2 sheets. Various families of the cuprate superconductors are described, paying special attention to aspects related to oxygen stoichiometry, phase stability, synthesis and chemical manipulation of charge carriers. Other aspects discussed are chemical applications of cuprates, possibly as gas sensors and copper-free oxide superconductors. All but the substituted Nd and Pr cuprates are hole-superconductors. Several families of cuprates show a nearly constant n(h) at maximum T(c). Besides this universality, the cuprates exhibit a number of striking common features. Based on Cu(2p) photoemission studies, it is found that the Cu-O charge-transfer energy, DELTA, and the Cu(3d)-O(2p) hybridization strength, t(pd), are key factors in the superconductivity of cuprates. The relative intensity of the satellite in the Cu(2p) core-level spectra, the polarizability of the CuO2 sheets as well as the hole concentration are related to DELTA/t(pd). These chemical bonding factors have to be explicitly taken into account in any model for superconductivity of the cuprates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Catalytic combustion of H-2 was carried out over combustion synthesized noble metal (Pd or Pt) ion-substituted CeO2 based catalysts using a feed stream that simulated exhaust gases from a fuel cell processor The catalysts showed a high activity for H-2-combustion and complete conversion was achieved below 200 C over all the catalysts when O-2 was used in a stoichiometric amount With higher amounts of O-2 the reaction rates Increased and complete conversions were possible below 100 C The reaction was also carried out over Pd-impregnated CeO2 The conversions of H-2 with stoichiometric amount of O-2 were found to be higher over Pd-substituted compound The mechanism of the reaction over noble metal-substituted compounds was proposed on the basis of X-ray photoelectron spectroscopy studies The redox couples between Ce and metal ions were established and a dual site redox mechanism was pi posed for the reaction (C) 2010 Elsevier B V All rights reserved

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The reactivity of several new acyclic, cyclic and bicyclic diphosphazanes towards Group-6 metal and iron carbonyls, and Pd, Pt and Rh derivatives has been studied. The structures of the products have been elucidated by IR and NMR spectroscopy and confirmed in a few instances by single crystal X-ray analyses.