159 resultados para Nihon Joshi Daigaku.
Resumo:
We report on the novel flow sensing application of piezoelectric ZnO thin film deposited on Phynox alloy sensing element. Characterization of piezoelectric ZnO films deposited on Phynox (Elgiloy) substrate at different RF powers is discussed. ZnO films deposited at RF power of 100W were found to have fine c-axis orientation, possesses excellent surface morphology with lower rms surface roughness of 1.87 nm and maximum d(31) coefficient value 4.7 pm V-1. The thin cantilever strip of Phynox alloy with ZnO film as a sensing layer for flow sensing has been tested for flow rates ranging from 2 to 18 L min(-1). A detailed theoretical analysis of the experimental set-up showing the relationship between output voltage and force at a particular flow rate has been discussed. The sensitivity of now sensing element is similar to 18 mV/(L min(-1)) and typical response time is of the order of 20 m s. The sensing element is calibrated using in-house developed testing set-up. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Genetic Algorithm for Rule-set Prediction (GARP) and Support Vector Machine (SVM) with free and open source software (FOSS) - Open Modeller were used to model the probable landslide occurrence points. Environmental layers such as aspect, digital elevation, flow accumulation, flow direction, slope, land cover, compound topographic index and precipitation have been used in modeling. Simulated output of these techniques is validated with the actual landslide occurrence points, which showed 92% (GARP) and 96% (SVM) accuracy considering precipitation in the wettest month and 91% and 94% accuracy considering precipitation in the wettest quarter of the year.
Resumo:
In this paper, we estimate the trends and variability in Advanced Very High Resolution Radiometer (AVHRR)-derived terrestrial net primary productivity (NPP) over India for the period 1982-2006. We find an increasing trend of 3.9% per decade (r = 0.78, R-2 = 0.61) during the analysis period. A multivariate linear regression of NPP with temperature, precipitation, atmospheric CO2 concentration, soil water and surface solar radiation (r = 0.80, R-2 = 0.65) indicates that the increasing trend is partly driven by increasing atmospheric CO2 concentration and the consequent CO2 fertilization of the ecosystems. However, human interventions may have also played a key role in the NPP increase: non-forest NPP growth is largely driven by increases in irrigated area and fertilizer use, while forest NPP is influenced by plantation and forest conservation programs. A similar multivariate regression of interannual NPP anomalies with temperature, precipitation, soil water, solar radiation and CO2 anomalies suggests that the interannual variability in NPP is primarily driven by precipitation and temperature variability. Mean seasonal NPP is largest during post-monsoon and lowest during the pre-monsoon period, thereby indicating the importance of soil moisture for vegetation productivity.
Resumo:
Recent work on molecular phylogenetics of Scolopendridae from the Western Ghats, Peninsular India, has suggested the presence of six cryptic species of the otostigmine Digitipes Attems, 1930, together with three species described in previous taxonomic work by Jangi and Dass (1984). Digitipes is the correct generic attribution for a monophyletic group of Indian species, these being united with three species from tropical Africa (including the type) that share a distomedial process on the ultimate leg femur of males that is otherwise unknown in Otostigminae. Second maxillary characters previously used in the diagnosis of Digitipes are dismissed because Indian species do not possess the putatively diagnostic character states. Two new species from the Western Ghats that correspond to groupings identified based on monophyly, sequence divergence and coalescent analysis using molecular data are diagnosed based on distinct morphological characters. They are D. jangii and D. periyarensis n. spp. Three species named by Jangi and Dass (Digitipes barnabasi, D. coonoorensis and D. indicus) are revised based on new collections; D. indicus is a junior subjective synonym of Arthrorhabdus jonesii Verhoeff, 1938, the combination becoming Digitipes jonesii (Verhoeff, 1938) n. comb. The presence of Arthrorhabdus in India is accordingly refuted. Three putative species delimited by molecular and ecological data remain cryptic from the perspective of diagnostic morphological characters and are presently retained in D. barnabasi, D. jangii and D. jonesii. A molecularly-delimited species that resolved as sister group to a well-supported clade of Indian Digitipes is identified as Otostigmus ruficeps Pocock, 1890, originally described from a single specimen and revised herein. One Indian species originally assigned to Digitipes, D. gravelyi, deviates from confidently-assigned Digitipes with respect to several characters and is reassigned to Otostigmus, as O. gravelyi (Jangi and Dass, 1984) n. comb.
Resumo:
This work presents micro-actuation of atomic force microscopy (AFM) cantilevers using piezoelectric Zinc Oxide (ZnO) thin film. In tapping mode AFM, the cantilever is driven near its resonant frequency by an external oscillator such as piezotube or stack of piezoelectric material. Use of integrated piezoelectric thin film for AFM cantilever eliminates the problems like inaccurate tuning and unwanted vibration modes. In this work, silicon AFM cantilevers were sputter deposited with ZnO piezoelectric film along with top and bottom metallic electrodes. The self-excitation of the ZnO coated AFM cantilever was studied using Laser Doppler Vibrometer (LDV). At its resonant frequency (227.11 kHz), the cantilever displacement varies linearly with applied excitation voltage. We observed an increase in the actuation response (131nm/V) due to improved quality of ZnO films deposited at 200 degrees C.
Resumo:
In this paper, we report on the application aspect of piezoelectric ZnO thin film deposited on flexible phynox alloy substrate. Highly crystalline piezoelectric ZnO thin films were deposited by RF reactive magnetron sputtering and were characterized by XRD, SEM, AFM analysis. Also, the effective d(33) coefficient value measurement was performed. The actuator element is a circular diaphragm of phynox alloy on to which piezoelectric ZnO thin film was deposited. ZnO film deposited actuator element was firmly fixed inside a suitable concave perspex mounting designed specifically for micro actuation purpose. The actuator element was excited at different frequencies for the supply voltages of 2V, 5V and 8V. Maximum deflection of the ZnO film deposited diaphragm was measured to be 1.25 mu m at 100 Hz for the supply voltage of 8V. The developed micro actuator has the potential to be used as a micro pump for pumping nano liters to micro liters of fluids per minute for numerous biomedical and aerospace applications.
Resumo:
In this paper, we report a novel piezoelectric ZnO nanogenerator on flexible metal alloy substrate (Phynox alloy) for energy harvesting and sensing applications. The vertically aligned ZnO nanowires are sandwiched between Au electrodes. The aligned growth of ZnO nanowires have been successfully synthesized on Au coated metal alloy substrate by hydrothermal method at low temperature (95 +/- 1 degrees C). The as-synthesized vertically aligned ZnO nanowires were characterized using FE-SEM. Further, PMMA is spin coated over the aligned ZnO nanowires for the purpose of their long term stability. The fabricated nanogenerator is of size 30mm x 6mm. From energy harvesting point of view, the response of the nanogenerator due to finger tip impacts ranges from 0.9 V to 1.4V. Also for sensing application, the maximum output voltage response of the nanogenerator is found to be 2.86V due to stainless steel (SS) ball impact and 0.92 V due to plastic ball impact.
Resumo:
8MeV electron irradiation effects on thioglycolic acid (TGA)-capped CdTe quantum dots (QD) are discussed in this study. CdTe QDs were characterized using x-ray diffraction (XRD), transmission electron microscope (TEM) and x-ray photoelectron spectroscopy (XPS). Steady-state and time-resolved emission spectroscopy and UV-visible absorption spectroscopy were performed before and after irradiation with 8MeV electrons. XRD and TEM confirm the growth of TGA-capped CdTe QDs. The photoemission wavelength, intensity and lifetimes were found to vary with electron dose. At lower doses, they were found to be increasing (red-shift of photoluminescence (PL) peak and intensity) while the intensity decreased at higher electron doses. The observed changes in PL property, XPS and XRD analysis suggest possible epitaxial growth of the CdS shell on the CdTe core. This work demonstrates electron beam induced formation of the CdS layer on the CdTe core, which is a key step towards growth of the water soluble CdTe/CdS core-shell structure for biomedical labelling applications.
Resumo:
Rapidly depleting stocks of fossil fuels and increasing greenhouse gas (GHG) emissions have necessitated the exploration of cost effective sustainable energy sources focussing on biofuels through algae. Abundant wastewaters generated in urban localities every day provide the nourishment to nurture algae for biofuel generation. The present communication focuses on the lipid prospects of algae grown in wastewater systems. Euglena sp., Spirogyra sp. and Phormidium sp. were collected from selected locations of sewage fed urban lakes and sewage treatment plants of Bangalore and Mysore. The total lipid content of Euglena sp. was higher (24.6%) compared to Spirogyra sp. (18.4%) followed by Phormidium sp. (8.8%) and their annual lipid yield potential was 6.52, 1.94 and 2.856 t/ha/year, respectively. These species showed higher content of fatty acids (palmitate, stearate followed by oleic and linoleic acids) with the desirable biofuel properties. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
We report the evidence for the anisotropic magnetoimpedance behavior in (001) oriented La0.7Sr0.3MnO3 (LSMO) thin films, in low frequency-low magnetic field regime. (001) oriented LSMO thin films were deposited using pulsed laser deposition and characterized with X-ray diffraction and temperature dependent magnetization studies. In the in-plain configuration, an ac magnetoresistance (MRac) of similar to -0.5% was observed at 1000 Oe, at 100 Hz frequency in these films. The MRac was found to decrease with increase in frequency. We observe increases in MRac at low frequency, indicating major contribution for change of permeability from domain wall motion. At higher frequencies, it decreases due to decrease in transverse permeability, resulting from dampening of domain wall motion. Out-of-plane configuration showed MRac similar to 5.5% at 1000 Oe, at 100 Hz frequency. The MRac turned from positive to negative with increase in frequency in out-of-plane configuration. These changes are attributed to the change in permeability of the film with the frequency and applied magnetic field.
Resumo:
Regular vaccinations with potent vaccine, in endemic countries and vaccination to live in non-endemic countries are the methods available to control foot-and-mouth disease. Selection of candidate vaccine strain is not only cumbersome but the candidate should grow well for high potency vaccine preparation. Alternative strategy is to generate an infectious cDNA of a cell culture-adapted virus and use the replicon for development of tailor-made vaccines. We produced a chimeric `O' virus in the backbone of Asia 1 and studied its characteristics. The chimeric virus showed high infectivity titre (>10(10)) in BHK 21 cell lines, revealed small plague morphology and there was no cross reactivity with antiserum against Asia I. The virus multiplies rapidly and reaches peak at 12 h post infection. The vaccine prepared with this virus elicited high antibody titres.
Resumo:
We report on the design, development, and performance study of a packaged piezoelectric thin film impact sensor, and its potential application in non-destructive material discrimination. The impact sensing element employed was a thin circular diaphragm of flexible Phynox alloy. Piezoelectric ZnO thin film as an impact sensing layer was deposited on to the Phynox alloy diaphragm by RF reactive magnetron sputtering. Deposited ZnO thin film was characterized by X-ray diffraction (XRD), Atomic Force Microscopy (AFM), and Scanning Electron Microscopy (SEM) techniques. The d(31) piezoelectric coefficient value of ZnO thin film was 4.7 pm V-1, as measured by 4-point bending method. ZnO film deposited diaphragm based sensing element was properly packaged in a suitable housing made of High Density Polyethylene (HDPE) material. Packaged impact sensor was used in an experimental set-up, which was designed and developed in-house for non-destructive material discrimination studies. Materials of different densities (iron, glass, wood, and plastic) were used as test specimens for material discrimination studies. The analysis of output voltage waveforms obtained reveals lots of valuable information about the impacted material. Impact sensor was able to discriminate the test materials on the basis of the difference in their densities. The output response of packaged impact sensor shows high linearity and repeatability. The packaged impact sensor discussed in this paper is highly sensitive, reliable, and cost-effective.
Resumo:
Given a smooth, projective variety Y over an algebraically closed field of characteristic zero, and a smooth, ample hyperplane section X subset of Y, we study the question of when a bundle E on X, extends to a bundle epsilon on a Zariski open set U subset of Y containing X. The main ingredients used are explicit descriptions of various obstruction classes in the deformation theory of bundles, together with Grothendieck-Lefschetz theory. As a consequence, we prove a Noether-Lefschetz theorem for higher rank bundles, which recovers and unifies the Noether-Lefschetz theorems of Joshi and Ravindra-Srinivas.
Resumo:
The Western Ghats (WG) of south India, a global biodiversity hotspot, has experienced complex geological history being part of Gondwana landmass and encountered extensive volcanic activity at the end of Cretaceous epoch. It also has a climatically and topographically heterogeneous landscape. Thus, the WG offer a unique setting to explore the influence of ecological and geological processes on the current diversity and distribution of its biota. To this end, three explicit biogeographical scenarios were hypothesized to evaluate the distribution and diversification of wet evergreen species of the WG - (1) southern WG was a refuge for the wet evergreen species during the Cretaceous volcanism, (2) phylogenetic breaks in the species phylogeny would correspond to geographic breaks (i.e., the Palghat gap) in the WG, and (3) species from each of the biogeographic subdivisions within the WG would form distinct clades. These hypotheses were tested on the centipede genus Digitipes from the WG which is known to be an ancient, endemic, and monophyletic group. The Digitipes molecular phylogeny was subjected to divergence date estimation using Bayesian approach, and ancestral areas were reconstructed using parsimony approach for each node in the phylogeny. Ancestral-area reconstruction suggested 13 independent dispersal events to explain the current distribution of the Digitipes species in the WG. Among these 13 dispersals, two dispersal events were at higher level in the Digitipes phylogeny and were from the southern WG to the central and northern WG independently in the Early Paleocene, after the Cretaceous Volcanism. The remaining 11 dispersal events explained the species' range expansions of which nine dispersals were from the southern WG to other biogeographic subdivisions in the Eocene-Miocene in the post-volcanic periods where species-level diversifications occurred. Taken together, these results suggest that southern WG might have served as a refuge for Digitipes species during Cretaceous volcanism.
Resumo:
Effective air flow distribution through perforated tiles is required to efficiently cool servers in a raised floor data center. We present detailed computational fluid dynamics (CFD) modeling of air flow through a perforated tile and its entrance to the adjacent server rack. The realistic geometrical details of the perforated tile, as well as of the rack are included in the model. Generally, models for air flow through perforated tiles specify a step pressure loss across the tile surface, or porous jump model based on the tile porosity. An improvement to this includes a momentum source specification above the tile to simulate the acceleration of the air flow through the pores, or body force model. In both of these models, geometrical details of tile such as pore locations and shapes are not included. More details increase the grid size as well as the computational time. However, the grid refinement can be controlled to achieve balance between the accuracy and computational time. We compared the results from CFD using geometrical resolution with the porous jump and body force model solution as well as with the measured flow field using particle image velocimetry (PIV) experiments. We observe that including tile geometrical details gives better results as compared to elimination of tile geometrical details and specifying physical models across and above the tile surface. A modification to the body force model is also suggested and improved results were achieved.