151 resultados para NEUTRON BEAMS
Resumo:
Size independent fracture energy and size effect on fracture energy are the key concerns for characterization of concrete fracture. Although there have been inconsistencies in results, a consensual fact is that the fracture energy from a large specimen is size independent. The fracture energy is proportional to the size of the fracture process zone (FPZ). FPZ size increases with size of the specimen, but the rate of increase of FPZ size decreases with increase in specimen size 1] implying that rate of increase of fracture energy decreases with increase in specimen size, more appropriately with increase in un-cracked ligament length. The ratio of fracture energy to the un-cracked ligament length almost becomes a constant at larger un-cracked ligament lengths. In the present study an attempt is made to obtain size independent fracture energy from fracture energy release rate. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
In the present work, a discrete numerical approach is adopted to understand size effect and fracture behavior in concrete. First, a comparison is performed between 2D and 3D geometrically similar structures to analyze thickness effect. The study is supplemented with element failure pattern to analyze crack propagation. Further, changing influence of notch to depth ratio is analyzed by comparing 3D geometrically similar structures with different values of notch depth ratio. Finally, a statistical analysis is performed to understand the influence of structure size and heterogeneity on regression parameters namely Bf(t)' and D-0. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
In this work, a fatigue crack propagation model developed using dimensional analysis for plain concrete is used in conjunction with the steel closing force to predict the crack growth behavior of reinforced concrete beams. A numerical procedure is followed using the proposed model to compute the fatigue life of RC beams and the dissipated energy in the steel reinforcement due to shake down behavior. Through a sensitivity study, it is found that the structural size is the most sensitive parameter on which the crack growth rate is dependent. Furthermore, the moment carrying capacity of an RC beam is computed as function of crack size by considering the effect of bond slip.
Resumo:
In this work, an attempt has been made to assess the fatigue life of reinforced concrete beams, by proposing a crack propagation law which accounts for parameters such as fracture toughness, crack length, loading ratio and structural size. A numerical procedure is developed to compute fatigue life of RC beams. The predicted results are compared with the available experimental data in the literature and seen to agree reasonably well. Further, in order to assess the remaining life of an RC member, the moment carrying capacity is determined as a function of crack extension, based on the crack tip opening displacement and residual strength of the member is computed at an event of unstable fracture.
Resumo:
This paper presents the details of crack growth study and remaining life assessment of concrete specimens made up of high strength concrete (HSC, HSC1) and ultra high strength concrete (UHSC). Flexural fatigue tests have been conducted on HSC, HSC1 and UHSC beams under constant amplitude loading with a stress ratio of 0.2. It is observed from the studies that (i) the failure patterns of HSC1 and UHSC beams indicate their ductility as the member was intact till the crack propagated up to 90% of the beam depth and (ii) the remaining life decreases with increase of notch depth (iii) the failure of the specimen is influenced by the frequency of loading. A ``Net K'' model has been proposed by using non-linear fracture mechanics principles for crack growth analysis and remaining life prediction. SIF (K) has been computed by using the principle of superposition. SIP due to the cohesive forces applied on the effective crack face inside the process zone has been obtained through Green's function approach by applying bi-linear tension softening relationship to consider the cohesive the stresses acting ahead of the crack tip. Remaining life values have been have been predicted and compared with the corresponding experimental values and observed that they are in good agreement with each other.
Resumo:
In this paper, we seek to find non-rotating beams with continuous mass and flexural stiffness distributions, that are isospectral to a given uniform rotating beam. The Barcilon-Gottlieb transformation is used to convert the fourth order governing equation of a non-rotating beam, to a canonical fourth order eigenvalue problem. If the coefficients in this canonical equation match with the coefficients of the uniform rotating beam equation, then the non-rotating beam is isospectral to the given rotating beam. The conditions on matching the coefficients leads to a pair of coupled differential equations. We solve these coupled differential equations for a particular case, and thereby obtain a class of non-rotating beams that are isospectral to a uniform rotating beam. However, to obtain isospectral beams, the transformation must leave the boundary conditions invariant. We show that the clamped end boundary condition is always invariant, and for the free end boundary condition to be invariant, we impose certain conditions on the beam characteristics. We also verify numerically that the frequencies of the non-rotating beam obtained using the finite element method (FEM) are the exact frequencies of the uniform rotating beam. Finally, the example of beams having a rectangular cross-section is presented to show the application of our analysis. Since experimental determination of rotating beam frequencies is a difficult task, experiments can be easily conducted on these rectangular non-rotating beams, to calculate the frequencies of the rotating beam. (c) 2012 Elsevier Ltd. All rights reserved.
Resumo:
In this paper, the stiffness and mass per unit length distributions of a rotating beam, which is isospectral to a given uniform axially loaded nonrotating beam, are determined analytically. The Barcilon-Gottlieb transformation is extended so that it transforms the governing equation of a rotating beam into the governing equation of a uniform, axially loaded nonrotating beam. Analysis is limited to a certain class of Euler-Bernoulli cantilever beams, where the product between the stiffness and the cube of mass per unit length is a constant. The derived mass and stiffness distributions of the rotating beam are used in a finite element analysis to confirm the frequency equivalence of the given and derived beams. Examples of physically realizable beams that have a rectangular cross section are shown as a practical application of the analysis.
Resumo:
The governing differential equation of the rotating beam reduces to that of a stiff string when the centrifugal force is assumed as constant. The solution of the static homogeneous part of this equation is enhanced with a polynomial term and used in the Rayleighs method. Numerical experiments show better agreement with converged finite element solutions compared to polynomials. Using this as an estimate for the first mode shape, higher mode shape approximations are obtained using Gram-Schmidt orthogonalization. Estimates for the first five natural frequencies of uniform and tapered beams are obtained accurately using a very low order Rayleigh-Ritz approximation.
Resumo:
In this paper we look for a rotating beam, with pinned-free boundary conditions, whose eigenpair (frequency and mode-shape) is same as that of a uniform non-rotating beam for a particular mode. It is seen that for any given mode, there exists a flexural stiffness function (FSF) for which the ith mode eigenpair of a rotating beam with uniform mass distribution, is identical to that of a corresponding non-rotating beam with same length and mass distribution. Inserting these derived FSF's in a finite element code for a rotating pinned-free beam, the frequencies and mode shapes of a non-rotating pinned-free beam are obtained. For the first mode, a physically realistic equivalent rotating beam is possible, but for higher modes, the FSF has internal singularities. Strategies for addressing these singularities in the FSF for finite element analysis are provided. The proposed functions can be used as test functions for rotating beam codes and also for targeted destiffening of rotating beams.
Resumo:
Wavelet coefficients based on spatial wavelets are used as damage indicators to identify the damage location as well as the size of the damage in a laminated composite beam with localized matrix cracks. A finite element model of the composite beam is used in conjunction with a matrix crack based damage model to simulate the damaged composite beam structure. The modes of vibration of the beam are analyzed using the wavelet transform in order to identify the location and the extent of the damage by sensing the local perturbations at the damage locations. The location of the damage is identified by a sudden change in spatial distribution of wavelet coefficients. Monte Carlo Simulations (MCS) are used to investigate the effect of ply level uncertainty in composite material properties such as ply longitudinal stiffness, transverse stiffness, shear modulus and Poisson's ratio on damage detection parameter, wavelet coefficient. In this study, numerical simulations are done for single and multiple damage cases. It is observed that spatial wavelets can be used as a reliable damage detection tool for composite beams with localized matrix cracks which can result from low velocity impact damage.
Resumo:
In this paper, the free vibration of a non-uniform free-free Euler-Bernoulli beam is studied using an inverse problem approach. It is found that the fourth-order governing differential equation for such beams possess a fundamental closed-form solution for certain polynomial variations of the mass and stiffness. An infinite number of non-uniform free-free beams exist, with different mass and stiffness variations, but sharing the same fundamental frequency. A detailed study is conducted for linear, quadratic and cubic variations of mass, and on how to pre-select the internal nodes such that the closed-form solutions exist for the three cases. A special case is also considered where, at the internal nodes, external elastic constraints are present. The derived results are provided as benchmark solutions for the validation of non-uniform free-free beam numerical codes. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
A new method of modeling partial delamination in composite beams is proposed and implemented using the finite element method. Homogenized cross-sectional stiffness of the delaminated beam is obtained by the proposed analytical technique, including extension-bending, extension-twist and torsion-bending coupling terms, and hence can be used with an existing finite element method. A two noded C1 type Timoshenko beam element with 4 degrees of freedom per node for dynamic analysis of beams is implemented. The results for different delamination scenarios and beams subjected to different boundary conditions are validated with available experimental results in the literature and/or with the 3D finite element simulation using COMSOL. Results of the first torsional mode frequency for the partially delaminated beam are validated with the COMSOL results. The key point of the proposed model is that partial delamination in beams can be analyzed using a beam model, rather than using 3D or plate models. (c) 2013 Elsevier B.V. All rights reserved.
Resumo:
This article presents the details of estimation of fracture parameters for high strength concrete (HSC, HSC1) and ultra high strength concrete (UHSC). Brief details about characterization of ingredients of HSC, HSC1 and UHSC have been provided. Experiments have been carried out on beams made up of HSC, HSC1 and UHSC considering various sizes and notch depths. Fracture characteristics such as size independent fracture energy (G(f)), size of fracture process zone (C-f), fracture toughness (K-IC) and crack tip opening displacement (CTODc) have been estimated based on the experimental observations. From the studies, it is observed that (i) UHSC has high fracture energy and ductility inspite of having a very low value of C-f; (ii) relatively much more homogeneous than other concretes, because of absence of coarse aggregates and well-graded smaller size particles; (iii) the critical SIF (K-IC) values are increasing with increase of beam depth and decreasing with increase of notch depth. Generally, it can be noted that there is significant increase in fracture toughness and CTODc. They are about 7 times in HSC1 and about 10 times in UHSC compared to those in HSC; (iv) for notch-to-depth ratio 0.1, Bazant's size effect model slightly overestimates the maximum failure loads compared to experimental observations and Karihaloo's model slightly underestimates the maximum failure loads. For the notch-to-depth ratio ranging from 0.2 to 0.4 for the case of UHSC, it can be observed that, both the size effect models predict more or less similar maximum failure loads compared to corresponding experimental values.
Resumo:
It is a tough task to distinguish a short-range ferromagnetically correlated cluster-glass phase from a canonical spin-glass-like phase in many magnetic oxide systems using conventional magnetometry measurements. As a case study, we investigate the magnetic ground state of La0.85Sr0.15CoO3, which is often debated based on phase separation issues. We report the results of two samples of La0.85Sr0.15CoO3 (S-1 and S-2) prepared under different conditions. Neutron depolarization, higher harmonic ac susceptibility and magnetic relaxation studies were carried out along with conventional magnetometry measurements to differentiate subtle changes at the microscopic level. There is no evidence of ferromagnetic correlation in the sample S-2 attributed to a spin-glass phase, and this is compounded by the lack of existence of a second order component of higher harmonic ac susceptibility and neutron depolarization. A magnetic relaxation experiment at different temperatures complements the spin glass characteristic in S-2. All these signal a sharp variance when we consider the cluster-glass-like phase (phase separated) in S-1, especially when prepared from an improper chemical synthesis process. This shows that the nonlinear ac susceptibility is a viable tool to detect ferromagnetic clusters such as those the neutron depolarization study can reveal.
Resumo:
A new delaminated composite beam element is formulated for Timoshenko as well as Euler-Bernoulli beam models. Shape functions are derived from Timoshenko functions; this provides a unified formulation for slender to moderately deep beam analyses. The element is simple and easy to implement, results are on par with those from free mode delamination models. Katz fractal dimension method is applied on the mode shapes obtained from finite element models, to detect the delamination in the beam. The effect of finite element size on fractal dimension method of delamination detection is quantified.