149 resultados para Bonded joints
Resumo:
The basic cyclic hexapeptide conformations which accommodate hydrogen bonded β and γ turns in the backbone have been worked out using stereochemical criteria and energy minimization procedures. It was found that cyclic hexapeptides can be made up of all possible combinations of 4 ± 1 hydrogen bonded types I, I', II and II' β turns, giving rise to symmetric conformations having twofold and inversion symmetries as well as nonsymmetric structures. Conformations having exclusive features of 3 ± 1 hydrogen bonded γ turns were found to be possible in threefold and S6 symmetric cyclic hexapeptides. The results show that the cyclic hexapeptides formed by the linking of two β turn tripeptide fragments differ mainly in (a) the hydrogen bonding scheme present in the β turn tripeptides and (b) the conformation at the α-carbon atoms where the two tripeptide fragments link. The different hydrogen bonding schemes found in the component β turns are: 1) a β turn with only a 4 ± 1 hydrogen bond, 2) a type I or I' β turn with 4 ± 1 and 3 ± 1 hydrogen bonds occurring in a bifurcated form and 3) a type II or II' β turn having both the 4 ± 1 and the 3 ± 1 hydrogen bonds with the same acceptor oxygen atom. The conformation at the linking α-carbon atoms was found to lie either in the extended region or in the 3 ± 1 hydrogen bonded γ turn or inverse γ turn regions. Further, the threefold and the S6 symmetric conformations have three γ turns interleaved by three extended regions or three inverse γ turns, respectively. The feasibility of accommodating alanyl residues of both isomeric forms in the CHP minima has been explored. Finally, the available experimental data are reviewed in the light of the present results.
Resumo:
Plasticity in amorphous alloys is associated with strain softening, induced by the creation of additional free volume during deformation. In this paper, the role of free volume, which was a priori in the material, on work softening was investigated. For this, an as-cast Zr-based bulk metallic glass (BMG) was systematically annealed below its glass transition temperature, so as to reduce the free volume content. The bonded-interface indentation technique is used to generate extensively deformed and well defined plastic zones. Nanoindentation was utilized to estimate the hardness of the deformed as well as undeformed regions. The results show that the structural relaxation annealing enhances the hardness and that both the subsurface shear band number density and the plastic zone size decrease with annealing time. The serrations in the nanoindentation load-displacement curves become smoother with structural relaxation. Regardless of the annealing condition, the nanohardness of the deformed regions is similar to 12-15% lower, implying that the prior free volume only changes the yield stress (or hardness) but not the relative flow stress (or the extent of strain softening). Statistical distributions of the nanohardness obtained from deformed and undeformed regions have no overlap, suggesting that shear band number density has no influence on the plastic characteristics of the deformed region.
Resumo:
4-Butyl-4-hydroxy-l-phenyl-3,5-pyrazolidinedione, ClaH16N20 a, Mr=248.3, monoclinic, P21/n, a = 22.357 (5), b = 5.014 (2), c = 11.350 (4)/~,, //=91.88(3) °, V=1272(1)A 3, Z=4, D,,=1.296(3), D x = 1.297 Mg m -3, 2(Cu Ka) = 1.5418/~, a = 0.777 mm -~, F(000) = 528, T= 293 K. Final R - 0.059 for 1668 observed reflections. The hetero nitrogen which carries the six-membered ring is planar in the structure while the other unsubstituted one is pyramidal. The five- and six-membered rings are almost coplanar. The crystal is made up of infinite columns of hydrogen-bonded molecules.
Resumo:
Pro-Gly segments in peptides and proteins are prone to adopt the 0-turn conformation. This paper reports experimental data for the presence of this conformation in a linear tripeptide N-acetyl-L-prolylglycyl-L-phenylalanineb oth in the solid state and in solution. X-ray diffraction data on the tripeptide crystal show that it exists in the type I1 0-turn conformation. CD and proton NMR data show that this conformation persists in trifluoroethanol and methanol solutions in equilibrium with the nonhydrogen-bonded structures. Isomerization around the acetyl-prolyl bond is seen to take place in dimethyl sulfoxide solutions of the tripeptide.
Resumo:
The fatigue and fracture performance of a cracked plate can be substantially improved by providing patches as reinforcements. The effectiveness of the patches is related to the reduction they cause in the stress intensity factor (SIF) of the crack. So, for reliable design, one needs an accurate evaluation of the SIF in terms of the crack, patch and adhesive parameters. In this investigation, a centrally cracked large plate with a pair of symmetric bonded narrow patches, oriented normally to the crack line, is analysed by a continuum approach. The narrow patches are treated as transversely flexible line members. The formulation leads to an integral equation which is solved numerically using point collocation. The convergence is rapid. It is found that substantial reductions in SIF are possible with practicable patch dimensions and locations. The patch is more effective when placed on the crack than ahead of the crack. The present analysis indicates that a little distance inwards of the crack tip, not the crack tip itself, is the ideal location, for the patch.
Resumo:
The tetrapeptide t-butyloxycarbonyl--aminoisobutyryl--aminoisobutyryl-L- phenylalanyl-L-methionyl amide crystallizes in the orthorhombic space group P212121 with a= 9.096, b= 18.067, c= 21.701 Å and Z= 4. The crystals contain one molecule of dimethyl sulphoxide (DMSO) associated with each peptide. The structure has been solved by direct methods and refined to an R value of 0.103 for 2 672 observed reflections. The peptide adopts a distorted 310 helical structure stabilized by two intramolecular 4 1 hydrogen bonds between the Boc CO and Aib(1) CO groups and the NH groups of Phe(3) and Met(4), respectively. A long hydrogen bond (N O = 3.35 Å) is also observed between Aib(2) CO and one of the terminal amide hydrogens. The DMSO molecule is strongly hydrogen bonded to the Aib(1) NH group. The solid-state conformation agrees well with proposals made on the basis of n.m.r. studies in solution.
Resumo:
In the systematic study of amine … LiCl [amines = NH3, CH3NH2, (CH3)2NH] complexes the possibility of an ion-pair structure and the effect of methylation on the stabilization energy is investigated. ΔEis evaluated by the SCF/4-31G method and augmented by the approximate dispersion energy calculated perturbationally. The interaction energy decreases with the increasing number of methyl groups in the amine. The dispersion energy plays a negligible role in the stabilization of complexes. None of the systems studied are ion pairs; their Li bonds are of a so-called molecular type. Due to the divergence of the multipole expansion, the attempt to correct the 4-31G stabilization energies via the electrostatic energy fails. The relative order of the ΔE in the series of complexes is verified instead in the extended basis set calculation. The lithium bonds are compared with their H-bonded analogues.
Resumo:
This paper presents an inverse dynamic formulation by the Newton–Euler approach for the Stewart platform manipulator of the most general architecture and models all the dynamic and gravity effects as well as the viscous friction at the joints. It is shown that a proper elimination procedure results in a remarkably economical and fast algorithm for the solution of actuator forces, which makes the method quite suitable for on-line control purposes. In addition, the parallelism inherent in the manipulator and in the modelling makes the algorithm quite efficient in a parallel computing environment, where it can be made as fast as the corresponding formulation for the 6-dof serial manipulator. The formulation has been implemented in a program and has been used for a few trajectories planned for a test manipulator. Results of simulation presented in the paper reveal the nature of the variation of actuator forces in the Stewart platform and justify the dynamic modelling for control.
Resumo:
The nitrosation of monophenylamido substituted quadridentate Schiff base complexes of copper(II) are observed to adopt N-bonded isonitroso coordination whereas the phenylisocyanation of the corresponding mononitrosated quadridentate complexes are found to prefer O-bonded isonitroso coordination.
Resumo:
Interference fits are used extensively in aircraft structural joints because of their improved fatigue performance. Recent advances in analysis of these joints have increased understanding of the nonlinear load-contact and load-interfacial slip variations in these joints. Experimental work in these problems is lacking due to difficulties in determining partial contact and partial slip along the pin-hole interface. In this paper, an experimental procedure is enumerated for determining load-contact relations in interference/clearance fits, using photoelastic models and applying a technique for detecting progress of separation/contact up to predetermined locations. The study incorporates a detailed procedure for model making, controlling interference, locating break of contact up to known locations around the interface, estimating optically the degree of interference, determining interfacial friction and evaluating stresses in the sheet. Experiments, simulating joints in large sheets, were carried out under both pin and plate loads. The present studies provide load-separation behavior in interference joint with finite interfacial friction.
Resumo:
The plane problem of two dissimilar materials, bonded together and containing a crack along their common interface, which were subjected to a biaxial load at infinity, is examined by giving a closed-form expression for the first stress invariant of the normal stresses, which is equally valid everywhere, near to, and far from, the crack-tip region. This exact expression for the first-stress invariant is compared by constructing the respective isopachic-fringe patterns, to the approximate expression with non-singular terms, due to the biaxiality factor, for the same quantity. Significant differences between respective isopachic-patterns were found and their dependence on the elastic properties of both materials and the applied loads was demonstrated. The relative errors between the computedK I - andK II -components by using the approximate expression for the first stress-invariant and the accurate one, derived from closed-form solution along either isopachic-fringes or along circles and radii from the crack-tip have been given, indicating in some cases large discrepancies between exact and approximate solutions.
Resumo:
The prefered tautomer(s) of hydroxycyclotriphosphazatrienes and prototropic exchange in solution have been established by 31P n.m.r. spectroscopy, thus confirming predictions deduced from basicity calculations; the X-ray structure of N3P3Ph2(OMe)3OH shows that it exists as the hydrogen-bonded dimer of the oxophosphazadiene tautomer in which a proton is adjacent to the PPh2 group.
Resumo:
The hexahydrate of a 1:1 complex between L-histidyl-L-serine and glycyl-L-glutamic acid crystallizes in space group P1 with a = 4.706(1), b= 8.578(2), c= 16.521(3) ÅA; α= 85.9(1), β= 89.7(1)°, = 77.4(1). The crystal structure, solved by direct methods, has been refined to an R value of 0.046 for 2150 observed reflections. The two peptide molecules in the structure have somewhat extended conformations. The unlike molecules aggregate into separate alternating layers. Each layer is stabilized by hydrogen bonded head-to-tail sequences as well as sequences of hydrogen bonds involving peptide groups. The arrangement of molecules in each layer is similar to one of the plausible idealized arrangements of L-alanyl-L-alanine worked out from simple geometrical considerations. Adjacent layers in the structure are held together by interactions involving side chains as well as water molecules. The water structure observed in the complex provides a good model, at atomic resolution, for that in protein crystals. An interesting feature of the crystal structure is the existence of two water channels in the interfaces between adjacent peptide layers.
Resumo:
The possibility of hydroxyproline residues stabilizing the collagen triple-helical structure by the formation of additional hydrogen bonds through their γ-hydroxyl group has been studied from structural considerations. It is not possible for this hydroxyl group to form a direct hydrogen bond with a suitable group in a neighbouring chain of the triple-helical protofibril. However, in the modified one-bonded structure, which is stabilized by additional hydrogen bonds being formed through water molecules as intermediaries (put forward in 1968 by Ramachandran, G. N. and Chandrasekharan, R.), it is found that the γ-hydroxyl group of hydroxyproline can form a good hydrogen bond with the water oxygen as acceptor, the hydrogen bond length being 2.82 Å. It is proposed that, in addition to stabilizing the collagen triple-helical structure due to the stereochemical properties of the pyrrolidine ring, hydroxyproline gives added stability by the formation of an extra hydrogen bond. Experimental studies on the determination of shrinkage and denaturation temperatures of native collagen and its synthetic analogues, as a function of their hydroxyproline content, are being undertaken to test this hypothesis.
Resumo:
Malonic acid is shown to undergo an interesting phase transition at 360 K when the two non-equivalent cyclic hydrogen-bonded dimers present in the low-temperature phase become equivalent.