271 resultados para para-orthogonal polynomials
Resumo:
Design criteria and full-diversity Distributed Space Time Codes (DSTCs) for the two phase transmission based cooperative diversity protocol of Jing-Hassibi and the Generalized Nonorthogonal Amplify and Forward (GNAF) protocol are reported, when the relay nodes are assumed to have knowledge of the phase component of the source to relay channel gains. It is shown that this under this partial channel state information (CSI), several well known space time codes for the colocated MIMO (Multiple Input Multiple Output) channel become amenable for use as DSTCs. In particular, the well known complex orthogonal designs, generalized coordinate interleaved orthogonal designs (GCIODs) and unitary weight single symbol decodable (UW-SSD) codes are shown to satisfy the required design constraints for DSTCs. Exploiting the relaxed code design constraints, we propose DSTCs obtained from Clifford Algebras which have low ML decoding complexity.
Resumo:
Synchronization issues pose a big challenge in cooperative communications. The benefits of cooperative diversity could be easily undone by improper synchronization. The problem arises because it would be difficult, from a complexity perspective, for multiple transmitting nodes to synchronize to a single receiver. For OFDM based systems, loss of performance due to imperfect carrier synchronization is severe, since it results in inter-carrier interference (ICI). The use of space-time/space-frequency codes from orthogonal designs are attractive for cooperative encoding. But orthogonal designs suffer from inter-symbol interference (ISI) due to the violation of quasi-static assumption, which can arise due to frequency- or time-selectivity of the channel. In this paper, we are concerned with combating the effects of i) ICI induced by carrier frequency offsets (CFO), and ii) ISI induced by frequency selectivity of the channel, in a cooperative communication scheme using space-frequency block coded (SFBC) OFDM. Specifically, we present an iterative interference cancellation (IC) algorithm to combat the ISI and ICI effects. The proposed algorithm could be applied to any orthogonal or quasi-orthogonal designs in cooperative SFBC OFDM schemes.
Resumo:
Differential Unitary Space-Time Block codes (STBCs) offer a means to communicate on the Multiple Input Multiple Output (MIMO) channel without the need for channel knowledge at both the transmitter and the receiver. Recently Yuen-Guan-Tjhung have proposed Single-Symbol-Decodable Differential Space-Time Modulation based on Quasi-Orthogonal Designs (QODs) by replacing the original unitary criterion by a scaled unitary criterion. These codes were also shown to perform better than differential unitary STBCs from Orthogonal Designs (ODs). However the rate (as measured in complex symbols per channel use) of the codes of Yuen-Guan-Tjhung decay as the number of transmit antennas increase. In this paper, a new class of differential scaled unitary STBCs for all even number of transmit antennas is proposed. These codes have a rate of 1 complex symbols per channel use, achieve full diversity and moreover they are four-group decodable, i.e., the set of real symbols can be partitioned into four groups and decoding can be done for the symbols in each group separately. Explicit construction of multidimensional signal sets that yield full diversity for this new class of codes is also given.
Resumo:
The 1,4-dihydropyridine ring in the title hydrate, C17H18BrNO2 center dot H2O, has a flattened-boat conformation, and the benzene ring is occupies a position orthogonal to this [dihedral angle: 82.19 (16)degrees]. In the crystal packing, supramolecular arrays mediated by N-H center dot center dot center dot O-water and O-water-H center dot center dot center dot O-carbonyl hydrogen bonding are formed in the bc plane. A highly disordered solvent molecule is present within a molecular cavity defined by the organic and water molecules. Its contribution to the electron density was removed from the observed data in the final cycles of refinement and the formula, molecular weight and density are given without taking into account the contribution of the solvent molecule.
Resumo:
With the increasing adoption of wireless technology, it is reasonable to expect an increase in file demand for supporting both real-time multimedia and high rate reliable data services. Next generation wireless systems employ Orthogonal Frequency Division Multiplexing (OFDM) physical layer owing, to the high data rate transmissions that are possible without increase in bandwidth. Towards improving file performance of these systems, we look at the design of resource allocation algorithms at medium-access layer, and their impact on higher layers. While TCP-based clastic traffic needs reliable transport, UDP-based real-time applications have stringent delay and rate requirements. The MAC algorithms while catering to the heterogeneous service needs of these higher layers, tradeoff between maximizing the system capacity and providing fairness among users. The novelly of this work is the proposal of various channel-aware resource allocation algorithms at the MAC layer. which call result in significant performance gains in an OFDM based wireless system.
Resumo:
Recently Li and Xia have proposed a transmission scheme for wireless relay networks based on the Alamouti space time code and orthogonal frequency division multiplexing to combat the effect of timing errors at the relay nodes. This transmission scheme is amazingly simple and achieves a diversity order of two for any number of relays. Motivated by its simplicity, this scheme is extended to a more general transmission scheme that can achieve full cooperative diversity for any number of relays. The conditions on the distributed space time block code (DSTBC) structure that admit its application in the proposed transmission scheme are identified and it is pointed out that the recently proposed full diversity four group decodable DST-BCs from precoded co-ordinate interleaved orthogonal designs and extended Clifford algebras satisfy these conditions. It is then shown how differential encoding at the source can be combined with the proposed transmission scheme to arrive at a new transmission scheme that can achieve full cooperative diversity in asynchronous wireless relay networks with no channel information and also no timing error knowledge at the destination node. Finally, four group decodable distributed differential space time block codes applicable in this new transmission scheme for power of two number of relays are also provided.
Resumo:
Next generation wireless systems employ Orthogonal frequency division multiplexing (OFDM) physical layer owing to the high data rate transmissions that are possible without increase in bandwidth. While TCP performance has been extensively studied for interaction with link layer ARQ, little attention has been given to the interaction of TCP with MAC layer. In this work, we explore cross-layer interactions in an OFDM based wireless system, specifically focusing on channel-aware resource allocation strategies at the MAC layer and its impact on TCP congestion control. Both efficiency and fairness oriented MAC resource allocation strategies were designed for evaluating the performance of TCP. The former schemes try to exploit the channel diversity to maximize the system throughput, while the latter schemes try to provide a fair resource allocation over sufficiently long time duration. From a TCP goodput standpoint, we show that the class of MAC algorithms that incorporate a fairness metric and consider the backlog outperform the channel diversity exploiting schemes.
Resumo:
In this paper we consider the problems of computing a minimum co-cycle basis and a minimum weakly fundamental co-cycle basis of a directed graph G. A co-cycle in G corresponds to a vertex partition (S,V ∖ S) and a { − 1,0,1} edge incidence vector is associated with each co-cycle. The vector space over ℚ generated by these vectors is the co-cycle space of G. Alternately, the co-cycle space is the orthogonal complement of the cycle space of G. The minimum co-cycle basis problem asks for a set of co-cycles that span the co-cycle space of G and whose sum of weights is minimum. Weakly fundamental co-cycle bases are a special class of co-cycle bases, these form a natural superclass of strictly fundamental co-cycle bases and it is known that computing a minimum weight strictly fundamental co-cycle basis is NP-hard. We show that the co-cycle basis corresponding to the cuts of a Gomory-Hu tree of the underlying undirected graph of G is a minimum co-cycle basis of G and it is also weakly fundamental.
Resumo:
Employing an error control code is one of the techniques to reduce the Peak-to-Average Power Ratio (PAPR) in a Orthogonal Frequency Division Multiplexing system, a well known class of such codes being the cosets of Reed-Muller codes. In this paper, we consider the class of such coset-codes of arbitrary linear codes and present a method of doubling the size of such a code without increasing the PAPR, by combining two such binary coset-codes. We identify the conditions under which we can employ this doubling more than once with no marginal increase in the PAPR value. Given a PAPR and length, our method has enabled to get the best coset-code (in terms of the size). Also, we show that the PAPR information of the coset-codes of the extended codes is obtainable from the PAPR of the corresponding coset-codes of the parent code. We have also shown a special type of lengthening is useful in PAPR studies.
Resumo:
In modern wireline and wireless communication systems, Viterbi decoder is one of the most compute intensive and essential elements. Each standard requires a different configuration of Viterbi decoder. Hence there is a need to design a flexible reconfigurable Viterbi decoder to support different configurations on a single platform. In this paper we present a reconfigurable Viterbi decoder which can be reconfigured for standards such as WCDMA, CDMA2000, IEEE 802.11, DAB, DVB, and GSM. Different parameters like code rate, constraint length, polynomials and truncation length can be configured to map any of the above mentioned standards. Our design provides higher throughput and scalable power consumption in various configuration of the reconfigurable Viterbi decoder. The power and throughput can also be optimized for different standards.
Resumo:
Single-symbol maximum likelihood (ML) decodable distributed orthogonal space-time block codes (DOST- BCs) have been introduced recently for cooperative networks and an upper-bound on the maximal rate of such codes along with code constructions has been presented. In this paper, we introduce a new class of distributed space-time block codes (DSTBCs) called semi-orthogonal precoded distributed single-symbol decodable space-time block codes (Semi-SSD-PDSTBCs) wherein, the source performs preceding on the information symbols before transmitting it to all the relays. A set of necessary and sufficient conditions on the relay matrices for the existence of semi-SSD- PDSTBCs is proved. It is shown that the DOSTBCs are a special case of semi-SSD-PDSTBCs. A subset of semi-SSD-PDSTBCs having diagonal covariance matrix at the destination is studied and an upper bound on the maximal rate of such codes is derived. The bounds obtained are approximately twice larger than that of the DOSTBCs. A systematic construction of Semi- SSD-PDSTBCs is presented when the number of relays K ges 4 and the constructed codes are shown to have higher rates than that of DOSTBCs.
Resumo:
Sequence design problems are considered in this paper. The problem of sum power minimization in a spread spectrum system can be reduced to the problem of sum capacity maximization, and vice versa. A solution to one of the problems yields a solution to the other. Subsequently, conceptually simple sequence design algorithms known to hold for the white-noise case are extended to the colored noise case. The algorithms yield an upper bound of 2N - L on the number of sequences where N is the processing gain and L the number of non-interfering subsets of users. If some users (at most N - 1) are allowed to signal along a limited number of multiple dimensions, then N orthogonal sequences suffice.
Resumo:
The Orthogonal Frequency Division Multiplexing (OFDM) is a form of Multi-Carrier Modulation where the data stream is transmitted over a number of carriers which are orthogonal to each other i.e. the carrier spacing is selected such that each carrier is located at the zeroes of all other carriers in the spectral domain. This paper proposes a new novel iterative frequency offset estimation algorithm for an OFDM system in order to receive the OFDM data symbols error-free over the noisy channel at the receiver and to achieve frequency synchronization between the transmitter and the receiver. The performance of this algorithm has been studied in AWGN, ADSL and SUI channels successfully.
Resumo:
The Orthogonal Frequency Division Multiplexing (OFDM) is a form of Multi-Carrier Modulation where the data stream is transmitted over a number of carriers which are orthogonal to each other i.e. the carrier spacing is selected such that each carrier is located at the zeroes of all other carriers in the spectral domain. This paper proposes a new novel sampling offset estimation algorithm for an OFDM system in order to receive the OFDM data symbols error-free over the noisy channel at the receiver and to achieve fine timing synchronization between the transmitter and the receiver. The performance of this algorithm has been studied in AWGN, ADSL and SUI channels successfully.
Resumo:
It is known that by employing space-time-frequency codes (STFCs) to frequency selective MIMO-OFDM systems, all the three diversity viz spatial, temporal and multipath can be exploited. There exists space-time-frequency block codes (STFBCs) designed using orthogonal designs with constellation precoder to get full diversity (Z.Liu, Y.Xin and G.Giannakis IEEE Trans. Signal Processing, Oct. 2002). Since orthogonal designs of rate one exists only for two transmit antennas, for more than two transmit antennas STFBCs of rate-one and full-diversity cannot be constructed using orthogonal designs. This paper presents a STFBC scheme of rate one for four transmit antennas designed using quasi-orthogonal designs along with co-ordinate interleaved orthogonal designs (Zafar Ali Khan and B. Sundar Rajan Proc: ISIT 2002). Conditions on the signal sets that give full-diversity are identified. Simulation results are presented to show the superiority of our codes over the existing ones.