403 resultados para oxygen transport
Resumo:
Interaction of shock heated test gas in the free piston driven shock tube with bulk and thin film of cubic zirconium dioxide (ZrO2) prepared by combustion method is investigated. The test samples before and after exposure to the shock wave are analyzed by X-ray diffraction (XRD), X-Ray Photoelectron Spectroscopy (XPS) and Scanning Electron Microscope (SEM). The study shows transformation of metastable cubic ZrO2 to stable monoclinic ZrO2 phase after interacting with shock heated oxygen gas due to the heterogeneous catalytic recombination surface reaction.
Resumo:
For a dynamically disordered continuum it is found that the exact quantum mechanical mean square displacement 〈x2(t)〉∼t3, for t→∞. A Gaussian white-noise spectrum is assumed for the random potential. The result differs qualitatively from the diffusive behavior well known for the one-band lattice Hamiltonian, and is understandable in terms of the momentum cutoff inherent in the lattice, simulating a "momentum bath."
Resumo:
Oxidation of di-tert-butyl thioketone (1) and 2,2,4,4-tetramethylcyclobutylth ioketone (2) by singlet oxygen yields the corresponding sulfine and ketone; in the case of 1 the sulfine is the major product, whereas in 2 it is the ketone. 1,2,3-Dioxathietane has been suggested as the precursor for the ketones, and the zwitterionic/diradid peroxide is believed to be a common primary intermediate for both sulfine and ketone. Steric influence is felt both during primary interaction between singlet oxygen and thioketone and during the partitioning of the peroxide intermediate. Steric interaction is suggested as the reason for variations in the product distribution between 1 and 2. Singlet oxygen is also generated through energy transfer from the triplet state of thioketones. These excited states also directly react with oxygen to yield ketone.
Resumo:
Adsorption of oxygen on Ni, Cu, Pd, Ag, and Au surfaces has been investigated by employing UV and X-ray photoelectron spectrscopy as well as electron energy loss spectroscopy (EELS). Molecularly chemisorbed (singlet) oxygen is found on Ni, Cu, Ag, and Au surfaces showing features such as stabilization of the rB* orbital, destabilization of the .nu orbital, higher O(1s) binding energy than the atomic species, and a band 2-3 eV below the Fermi level due to metal d-O(2p)u* interaction. 0-0 and metal-oxygen stretching frequencies have been observed in EELS. Physical adsorption of O2 is found to occur on Pd and Ni surfaces, only at high exposures in the latter case. Physical adsorption and multilayer condensation of CO, on metal surfaces are distinguished by characteristic relaxation shifts in UPS as well as O(1s) binding energies. Adsorption of CO on a Ni surface covered with presorbed atomic oxygen gives rise to C02.
Resumo:
The probability distribution for the displacement x of a particle moving in a one-dimensional continuum is derived exactly for the general case of combined static and dynamic gaussian randomness of the applied force. The dynamics of the particle is governed by the high-friction limit of Brownian motion discussed originally by Einstein and Smoluchowski. In particular, the mean square displacement of the particle varies as t2 for t to infinity . This ballistic motion induced by the disorder does not give rise to a 1/f power spectrum, contrary to recent suggestions based on the above dynamical model.
Resumo:
Electrical transport in Bi doped amorphous semiconductors (GeSe3.5)100-xBix (x=0,4,10) is studied in a Bridgman anvil system up to a pressure of 90 kbar and down to 77 K. A pressure induced continuous transition from an amorphous semiconductor to a metal-like solid is observed in GeSe3.5. The addition of Bi disturbs significantly the behaviour of resistivity with pressure. The results are discussed in the light of molecular cluster model for GeySe1-y proposed by Phillips.
Resumo:
Molecular oxygen (012) i8 eatabliehed to be a good electrophile' and haabean Pound to yield many interesting moleculae upon reaction with olefinic, aromatic and other mu1 tipla bonded compounda. Although, oxidation of carbon ulphur double bond (thiones) by air her bean know for a longtime, nai the r the aechaniam nor the reactive species involved in theae oxidationa have bean etabliahodo Although there is no clear experimental verification, involvement of malecular oxygen in such types of oxidationa oP activated thiocarbonyl coc pounds has been recently auggeetad.4.
Resumo:
Retinol-binding protein and its complex with prealbumin were isolated from goat serum by chromatography on DEAE-Sephadex A-50, gel filtration and immuno-affinity chromatography on antigoat-serum albumin-Sepharose 4B. The homogeneous prealbumin-retinol-binding protein complex had a molecular weight of 75 000. Both on electrophoresis and in the presence of 2 M urea, the complex dissociated into retinol-binding protein and prealbumin. The molecular weight, electrophoretic behaviour, ultraviolet and fluorescence spectra of goat retinol-binding protein were similar to those isolated from other sources. On sodium dodecyl sulphate gel electrophoresis, goat prealbumin (molecular weight ≈ 55 000) exhibited two bands corresponding to molecular weights 26 000 and 13 000. This suggests that either goat prealbumin consists of two non-identical sub-units or perhaps complete dissociation might not have occurred. Goat prealbumin was able to bind Image -thyroxine and retinol-binding protein.
Resumo:
We propose that the poloidal field at the end of the last sunspot cycle before the Maunder minimum fell to a very low value due to fluctuations in the Babcock-Leighton process. With this assumption, a flux transport dynamo model is able to explain various aspects of the historical records of the Maunder minimum remarkably well by suitably choosing the parameters of the model to give the correct growth time.
Resumo:
Carbon-supported Pt-TiO2 (Pt-TiO2/C) catalysts with varying at. wt ratios of Pt to Ti, namely, 1:1, 2:1, and 3:1, are prepared by the sol-gel method. The electrocatalytic activity of the catalysts toward oxygen reduction reaction (ORR), both in the presence and absence of methanol, is evaluated for application in direct methanol fuel cells (DMFCs). The optimum at. wt ratio of Pt to Ti in Pt-TiO2/C is established by fuel cell polarization, linear sweep voltammetry, and cyclic voltammetry studies. Pt-TiO2/C heattreated at 750 degrees C with Pt and Ti in an at. wt ratio of 2:1 shows enhanced methanol tolerance, while maintaining high catalytic activity toward ORR. The DMFC with a Pt-TiO2/C cathode catalyst exhibits an enhanced peak power density of 180 mW/cm(2) in contrast to the 80 mW/cm(2) achieved from the DMFC with carbon-supported Pt catalyst while operating under identical conditions. Complementary data on the influence of TiO2 on the crystallinity of Pt, surface morphology, and particle size, surface oxidation states of individual constituents, and bulk and surface compositions are also obtained by powder X-ray diffraction, scanning and transmission electron microscopy, X-ray photoelectron spectroscopy, energy dispersive analysis by X-ray, and inductively coupled plasm optical emission spectrometry.
Resumo:
The electrical and optical response of a field-effect device comprising a network of semiconductor-enriched single-wall carbon nanotubes, gated with sodium chloride solution is investigated. Field-effect is demonstrated in a device that uses facile fabrication techniques along with a small-ion as the gate electrolyte-and this is accomplished as a result of the semiconductor enhancement of the tubes. The optical transparency and electrical resistance of the device are modulated with gate voltage. A time-response study of the modulation of optical transparency and electrical resistance upon application of gate voltage suggests the percolative charge transport in the network. Also the ac response in the network is investigated as a function of frequency and temperature down to 5 K. An empirical relation between onset frequency and temperature is determined.
Resumo:
Numerical and experimental studies on transport phenomena during solidification of an aluminum alloy in the presence of linear electromagnetic stirring are performed. The alloy is electromagnetically stirred to produce semisolid slurry in a cylindrical graphite mould placed in the annulus of a linear electromagnetic stirrer. The mould is cooled at the bottom, such that solidification progresses from the bottom to the top of the cylindrical mould. A numerical model is developed for simulating the transport phenomena associated with the solidification process using a set of single-phase governing equations of mass. momentum, energy. and species conservation. The viscosity variation of the slurry, used in the model, is determined experimentally using a rotary viscometer. The set of governing equations is solved using a pressure-based finite volume technique, along with an enthalpy based phase change algorithm. The numerical study involves prediction of temperature, velocity, species and solid fraction distribution in the mould. Corresponding solidification experiments are performed, with time-temperature history recorded at key locations. The microstructures at various temperature measurement locations in the solidified billet are analyzed. The numerical predictions of temperature variations are in good agreement with experiments, and the predicted flow field evolution correlates well with the microstructures observed at various locations.
Resumo:
The opposed-jet diffusion flame has been considered with four step reaction kinetics for hydrogenoxygen system. The studies have revealed that the flame broadening reduces and maximum temperature increases as pressure increases. The relative importance of different reaction steps have been brought out in different regions (unstable, near extinction and equilibrium). The present studies have also led to the deduction of the oveall reaction rate constants of an equivalent single step reaction using matching of a certain overall set of parameters for four step reaction scheme and equivalent single step reaction.
Resumo:
At 2-3 h after phenobaribtal administration, the drug has no effect on nucleoplasmic RNA synthesis and decreases nucleolar RNA synthesis. However, at this time there is an increase in the labelling of cytoplasmic poly(A)-containing RNA, even though there is decreased labelling of total polyribosomal RNA. The decrease in labelling of nucleolar and total polyribosomal RNA owing to phenobarbital is a transient phenomenon. Under similar conditions, 3-methylcholanthrene has no effect on nucleolar RNA synthesis, but leads to an increase in synthesis of nucleoplasmic and cytoplasmic poly(A)-containing RNA. Cytosol isolated from phenobarbital-treated, but not from 3-methyl-cholanthrene-treated, animals facilitates an enhanced transport of RNA from nuclei. At the time points investigated, 3-methylcholanthrene or its metabolite shows a 10-15-fold higher concentration in the chromatin than that of phenobarbital or its metabolite. It is suggested that the primary effect of phenobarbital is at the cytoplasmic level, promoting the transport of RNA from the nuclei, which can act as a trigger for enhanced transcription at later periods. 3-Methylcholanthrene or its metabolite directly binds to the chromatin and evokes a selective transcriptional response.
Resumo:
Poly(3,4-ethylenedioxy)thiophene (PEDOT) doped with tosylate ion (PEDOT-tosylate or VPP PEDOT) was synthesized by vapor phase polymerization (VPP) technique on glass as well as on glass/ITO and the electrochromic properties were investigated. Compared with that of PEDOT-PSS spin-coated on glass/ITO, the studies showed that VPP PEDOT has a lower work function and better electrochromic properties. The magneto and AC transport properties studies were done on VPP PEDOT coated on glass substrate. The system shows 2-dimensional variable range hopping and wave function shrinkage of charge carriers.