113 resultados para image-based rendering


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Approximate Nearest Neighbour Field maps are commonly used by computer vision and graphics community to deal with problems like image completion, retargetting, denoising, etc. In this paper, we extend the scope of usage of ANNF maps to medical image analysis, more specifically to optic disk detection in retinal images. In the analysis of retinal images, optic disk detection plays an important role since it simplifies the segmentation of optic disk and other retinal structures. The proposed approach uses FeatureMatch, an ANNF algorithm, to find the correspondence between a chosen optic disk reference image and any given query image. This correspondence provides a distribution of patches in the query image that are closest to patches in the reference image. The likelihood map obtained from the distribution of patches in query image is used for optic disk detection. The proposed approach is evaluated on five publicly available DIARETDB0, DIARETDB1, DRIVE, STARE and MESSIDOR databases, with total of 1540 images. We show, experimentally, that our proposed approach achieves an average detection accuracy of 99% and an average computation time of 0.2 s per image. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel Projection Error Propagation-based Regularization (PEPR) method is proposed to improve the image quality in Electrical Impedance Tomography (EIT). PEPR method defines the regularization parameter as a function of the projection error developed by difference between experimental measurements and calculated data. The regularization parameter in the reconstruction algorithm gets modified automatically according to the noise level in measured data and ill-posedness of the Hessian matrix. Resistivity imaging of practical phantoms in a Model Based Iterative Image Reconstruction (MoBIIR) algorithm as well as with Electrical Impedance Diffuse Optical Reconstruction Software (EIDORS) with PEPR. The effect of PEPR method is also studied with phantoms with different configurations and with different current injection methods. All the resistivity images reconstructed with PEPR method are compared with the single step regularization (STR) and Modified Levenberg Regularization (LMR) techniques. The results show that, the PEPR technique reduces the projection error and solution error in each iterations both for simulated and experimental data in both the algorithms and improves the reconstructed images with better contrast to noise ratio (CNR), percentage of contrast recovery (PCR), coefficient of contrast (COC) and diametric resistivity profile (DRP). (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electrical Impedance Tomography (EIT) is a computerized medical imaging technique which reconstructs the electrical impedance images of a domain under test from the boundary voltage-current data measured by an EIT electronic instrumentation using an image reconstruction algorithm. Being a computed tomography technique, EIT injects a constant current to the patient's body through the surface electrodes surrounding the domain to be imaged (Omega) and tries to calculate the spatial distribution of electrical conductivity or resistivity of the closed conducting domain using the potentials developed at the domain boundary (partial derivative Omega). Practical phantoms are essentially required to study, test and calibrate a medical EIT system for certifying the system before applying it on patients for diagnostic imaging. Therefore, the EIT phantoms are essentially required to generate boundary data for studying and assessing the instrumentation and inverse solvers a in EIT. For proper assessment of an inverse solver of a 2D EIT system, a perfect 2D practical phantom is required. As the practical phantoms are the assemblies of the objects with 3D geometries, the developing of a practical 2D-phantom is a great challenge and therefore, the boundary data generated from the practical phantoms with 3D geometry are found inappropriate for assessing a 2D inverse solver. Furthermore, the boundary data errors contributed by the instrumentation are also difficult to separate from the errors developed by the 3D phantoms. Hence, the errorless boundary data are found essential to assess the inverse solver in 2D EIT. In this direction, a MatLAB-based Virtual Phantom for 2D EIT (MatVP2DEIT) is developed to generate accurate boundary data for assessing the 2D-EIT inverse solvers and the image reconstruction accuracy. MatVP2DEIT is a MatLAB-based computer program which simulates a phantom in computer and generates the boundary potential data as the outputs by using the combinations of different phantom parameters as the inputs to the program. Phantom diameter, inhomogeneity geometry (shape, size and position), number of inhomogeneities, applied current magnitude, background resistivity, inhomogeneity resistivity all are set as the phantom variables which are provided as the input parameters to the MatVP2DEIT for simulating different phantom configurations. A constant current injection is simulated at the phantom boundary with different current injection protocols and boundary potential data are calculated. Boundary data sets are generated with different phantom configurations obtained with the different combinations of the phantom variables and the resistivity images are reconstructed using EIDORS. Boundary data of the virtual phantoms, containing inhomogeneities with complex geometries, are also generated for different current injection patterns using MatVP2DEIT and the resistivity imaging is studied. The effect of regularization method on the image reconstruction is also studied with the data generated by MatVP2DEIT. Resistivity images are evaluated by studying the resistivity parameters and contrast parameters estimated from the elemental resistivity profiles of the reconstructed phantom domain. Results show that the MatVP2DEIT generates accurate boundary data for different types of single or multiple objects which are efficient and accurate enough to reconstruct the resistivity images in EIDORS. The spatial resolution studies show that, the resistivity imaging conducted with the boundary data generated by MatVP2DEIT with 2048 elements, can reconstruct two circular inhomogeneities placed with a minimum distance (boundary to boundary) of 2 mm. It is also observed that, in MatVP2DEIT with 2048 elements, the boundary data generated for a phantom with a circular inhomogeneity of a diameter less than 7% of that of the phantom domain can produce resistivity images in EIDORS with a 1968 element mesh. Results also show that the MatVP2DEIT accurately generates the boundary data for neighbouring, opposite reference and trigonometric current patterns which are very suitable for resistivity reconstruction studies. MatVP2DEIT generated data are also found suitable for studying the effect of the different regularization methods on reconstruction process. Comparing the reconstructed image with an original geometry made in MatVP2DEIT, it would be easier to study the resistivity imaging procedures as well as the inverse solver performance. Using the proposed MatVP2DEIT software with modified domains, the cross sectional anatomy of a number of body parts can be simulated in PC and the impedance image reconstruction of human anatomy can be studied.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A micro-newton static force sensor is presented here as a packaged product. The sensor, which is based on the mechanics of deformable objects, consists of a compliant mechanism that amplifies the displacement caused by the force that is to be measured. The output displacement, captured using a digital microscope and analyzed using image processing techniques, is used to calculate the force using precalibrated force-displacement curve. Images are scanned in real time at a frequency of 15 frames per second and sampled at around half the scanning frequency. The sensor was built, packaged, calibrated, and tested. It has simulated and measured stiffness values of 2.60N/m and 2.57N/m, respectively. The smallest force it can reliably measure in the presence of noise is about 2 mu N over a range of 1.4mN. The off-the-shelf digital microscope aside, all of its other components are purely mechanical; they are inexpensive and can be easily made using simple machines. Another highlight of the sensor is that its movable and delicate components are easily replaceable. The sensor can be used in aqueous environment as it does not use electric, magnetic, thermal, or any other fields. Currently, it can only measure static forces or forces that vary at less than 1Hz because its response time and bandwidth are limited by the speed of imaging with a camera. With a universal serial bus (USB) connection of its digital microscope, custom-developed graphical user interface (GUI), and related software, the sensor is fully developed as a readily usable product.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The image reconstruction problem encountered in diffuse optical tomographic imaging is ill-posed in nature, necessitating the usage of regularization to result in stable solutions. This regularization also results in loss of resolution in the reconstructed images. A frame work, that is attributed by model-resolution, to improve the reconstructed image characteristics using the basis pursuit deconvolution method is proposed here. The proposed method performs this deconvolution as an additional step in the image reconstruction scheme. It is shown, both in numerical and experimental gelatin phantom cases, that the proposed method yields better recovery of the target shapes compared to traditional method, without the loss of quantitativeness of the results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The model-based image reconstruction approaches in photoacoustic tomography have a distinct advantage compared to traditional analytical methods for cases where limited data is available. These methods typically deploy Tikhonov based regularization scheme to reconstruct the initial pressure from the boundary acoustic data. The model-resolution for these cases represents the blur induced by the regularization scheme. A method that utilizes this blurring model and performs the basis pursuit deconvolution to improve the quantitative accuracy of the reconstructed photoacoustic image is proposed and shown to be superior compared to other traditional methods via three numerical experiments. Moreover, this deconvolution including the building of an approximate blur matrix is achieved via the Lanczos bidagonalization (least-squares QR) making this approach attractive in real-time. (C) 2014 Optical Society of America

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper investigates a novel approach for point matching of multi-sensor satellite imagery. The feature (corner) points extracted using an improved version of the Harris Corner Detector (HCD) is matched using multi-objective optimization based on a Genetic Algorithm (GA). An objective switching approach to optimization that incorporates an angle criterion, distance condition and point matching condition in the multi-objective fitness function is applied to match corresponding corner-points between the reference image and the sensed image. The matched points obtained in this way are used to align the sensed image with a reference image by applying an affine transformation. From the results obtained, the performance of the image registration is evaluated and compared with existing methods, namely Nearest Neighbor-Random SAmple Consensus (NN-Ran-SAC) and multi-objective Discrete Particle Swarm Optimization (DPSO). From the performed experiments it can be concluded that the proposed approach is an accurate method for registration of multi-sensor satellite imagery. (C) 2014 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper discusses an approach for river mapping and flood evaluation to aid multi-temporal time series analysis of satellite images utilizing pixel spectral information for image classification and region-based segmentation to extract water covered region. Analysis of Moderate Resolution Imaging Spectroradiometer (MODIS) satellite images is applied in two stages: before flood and during flood. For these images the extraction of water region utilizes spectral information for image classification and spatial information for image segmentation. Multi-temporal MODIS images from ``normal'' (non-flood) and flood time-periods are processed in two steps. In the first step, image classifiers such as artificial neural networks and gene expression programming to separate the image pixels into water and non-water groups based on their spectral features. The classified image is then segmented using spatial features of the water pixels to remove the misclassified water region. From the results obtained, we evaluate the performance of the method and conclude that the use of image classification and region-based segmentation is an accurate and reliable for the extraction of water-covered region.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Simulated boundary potential data for Electrical Impedance Tomography (EIT) are generated by a MATLAB based EIT data generator and the resistivity reconstruction is evaluated with Electrical Impedance Tomography and Diffuse Optical Tomography Reconstruction Software (EIDORS). Circular domains containing subdomains as inhomogeneity are defined in MATLAB-based EIT data generator and the boundary data are calculated by a constant current simulation with opposite current injection (OCI) method. The resistivity images reconstructed for different boundary data sets and images are analyzed with image parameters to evaluate the reconstruction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Due to the ease of modification of electronic structure upon analyte adsorption, semiconductors have been the preferred materials as chemical sensors. At reduced dimension, however, the sensitivity of semiconductor-based sensors deteriorates significantly due to passivation, and often by increased band gap caused by quantum confinement. Using first-principles density functional theory combined with Boltzmann transport calculations, we demonstrate semiconductor-like sensitivity toward chemical species in ultrathin gold nanowires (AuNWs). The sensing mechanism is governed by the modification of the electronic structure of the AuNW as well as scattering of the charge carriers by analyte adsorption. Most importantly, the sensitivity exhibits a linear relationship with the electron affinities of the respective analytes. Based on this relationship, we propose an empirical parameter, which can predict an analyte-specific sensitivity of a AuNW, rendering them as effective sensors for a wide range of chemical an alytes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, various strategies like amine terminated GO (GO-NH2), in situ formed polyethylene grafted GO (PE-g-GO) and their combinations with maleated PE (maleic anhydride grafted PE) were adopted to reactively compatibilize blends of low density polyethylene (LDPE) and polyethylene oxide (PEO). These blends were further explored to design porous, antibacterial membranes for separation technology and the flux and the resistance across the membranes were studied systematically. It was observed that GO-NH2 led to uniform dispersion of PEO in a PE matrix and further resulted in a significant improvement in the mechanical properties of the blends when combined with maleated PE. The efficiency of various compatibilizers was further studied by monitoring the evolution of morphology as a function of the annealing time. It was observed that besides rendering uniform dispersion of PEO in PE and improving the mechanical properties, GO-NH2 further suppresses the coalescence in the blends. As the melt viscosities of the phases differ significantly, there is a gradient in the morphology as also manifested from scanning acoustic microscopy. Hence, the membranes were designed by systematically reducing the thickness of the as-pressed samples to expose the core as the active area for flux calculations. Selected membranes were also tested for their antibacterial properties by inoculating E. coli culture with the membranes and imaging at different time scales. This study opens new avenues to develop PE based cost effective anti-microbial membranes for water purification.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, various strategies like amine terminated GO (GO-NH2), in situ formed polyethylene grafted GO (PE-g-GO) and their combinations with maleated PE (maleic anhydride grafted PE) were adopted to reactively compatibilize blends of low density polyethylene (LDPE) and polyethylene oxide (PEO). These blends were further explored to design porous, antibacterial membranes for separation technology and the flux and the resistance across the membranes were studied systematically. It was observed that GO-NH2 led to uniform dispersion of PEO in a PE matrix and further resulted in a significant improvement in the mechanical properties of the blends when combined with maleated PE. The efficiency of various compatibilizers was further studied by monitoring the evolution of morphology as a function of the annealing time. It was observed that besides rendering uniform dispersion of PEO in PE and improving the mechanical properties, GO-NH2 further suppresses the coalescence in the blends. As the melt viscosities of the phases differ significantly, there is a gradient in the morphology as also manifested from scanning acoustic microscopy. Hence, the membranes were designed by systematically reducing the thickness of the as-pressed samples to expose the core as the active area for flux calculations. Selected membranes were also tested for their antibacterial properties by inoculating E. coli culture with the membranes and imaging at different time scales. This study opens new avenues to develop PE based cost effective anti-microbial membranes for water purification.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a GPU implementation of normalized cuts for road extraction problem using panchromatic satellite imagery. The roads have been extracted in three stages namely pre-processing, image segmentation and post-processing. Initially, the image is pre-processed to improve the tolerance by reducing the clutter (that mostly represents the buildings, vegetation,. and fallow regions). The road regions are then extracted using the normalized cuts algorithm. Normalized cuts algorithm is a graph-based partitioning `approach whose focus lies in extracting the global impression (perceptual grouping) of an image rather than local features. For the segmented image, post-processing is carried out using morphological operations - erosion and dilation. Finally, the road extracted image is overlaid on the original image. Here, a GPGPU (General Purpose Graphical Processing Unit) approach has been adopted to implement the same algorithm on the GPU for fast processing. A performance comparison of this proposed GPU implementation of normalized cuts algorithm with the earlier algorithm (CPU implementation) is presented. From the results, we conclude that the computational improvement in terms of time as the size of image increases for the proposed GPU implementation of normalized cuts. Also, a qualitative and quantitative assessment of the segmentation results has been projected.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To perform super resolution of low resolution images, state-of-the-art methods are based on learning a pair of lowresolution and high-resolution dictionaries from multiple images. These trained dictionaries are used to replace patches in lowresolution image with appropriate matching patches from the high-resolution dictionary. In this paper we propose using a single common image as dictionary, in conjunction with approximate nearest neighbour fields (ANNF) to perform super resolution (SR). By using a common source image, we are able to bypass the learning phase and also able to reduce the dictionary from a collection of hundreds of images to a single image. By adapting recent developments in ANNF computation, to suit super-resolution, we are able to perform much faster and accurate SR than existing techniques. To establish this claim, we compare the proposed algorithm against various state-of-the-art algorithms, and show that we are able to achieve b etter and faster reconstruction without any training.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

3-Dimensional Diffuse Optical Tomographic (3-D DOT) image reconstruction algorithm is computationally complex and requires excessive matrix computations and thus hampers reconstruction in real time. In this paper, we present near real time 3D DOT image reconstruction that is based on Broyden approach for updating Jacobian matrix. The Broyden method simplifies the algorithm by avoiding re-computation of the Jacobian matrix in each iteration. We have developed CPU and heterogeneous CPU/GPU code for 3D DOT image reconstruction in C and MatLab programming platform. We have used Compute Unified Device Architecture (CUDA) programming framework and CUDA linear algebra library (CULA) to utilize the massively parallel computational power of GPUs (NVIDIA Tesla K20c). The computation time achieved for C program based implementation for a CPU/GPU system for 3 planes measurement and FEM mesh size of 19172 tetrahedral elements is 806 milliseconds for an iteration.