128 resultados para foliar boron concentration
Resumo:
We investigate the gate-controlled direct band-to-band tunneling (BTBT) current in a graphene-boron nitride (G-BN) heterobilayer channel-based tunnel field effect transistor. We first study the imaginary band structure of hexagonal and Bernal-stacked heterobilayers by density functional theory, which is then used to evaluate the gate-controlled current under the Wentzel-Kramers-Brillouin approximation. It is shown that the direct BTBT is probable for a certain interlayer spacing of the G-BN which depends on the stacking orders.
Resumo:
Zinc Oxide (ZnO) and indium doped ZnO (IZO) thin films with different indium compositions were grown on p-type boron doped Si substrates by pulsed laser deposition (PLD). The effect of indium concentration on the structural, optical and electrical properties of the film was studied. XRD, XPS and Raman studies confirm the single phase formation and successful doping of In in to ZnO. We observed various photoluminescence emissions, ranging from UV to visible, with the incorporation of In into ZnO. Room temperature Current-Voltage (I-V) characteristics showed good p-n junction properties for n-type-undoped and In doped ZnO with p-type substrates. The turn on voltage was observed to be decreasing with increase in In composition.
Resumo:
In the present work, we report spectroscopic studies of laser-induced plasmas produced by focusing the second harmonic (532nm) of a Nd:YAG laser onto the laminar flow of a liquid containing chromium. The plasma temperature is determined from the coupled Saha-Boltzmann plot and the electron density is evaluated from the Stark broadening of an ionic line of chromium Cr(II)] at 267.7nm. Our results reveal a decrease in plasma temperature with an increase in Cr concentration up to a certain concentration level; after that, it becomes approximately constant, while the electron density increases with an increase in analyte (Cr) concentration in liquid matrix.
Resumo:
Surface-functionalized multiwall carbon nanotubes (MWCNTs) are incorporated in poly(methyl methacrylate)/styrene acrylonitrile (PMMA/SAN) blends and the pretransitional regime is monitored in situ by melt rheology and dielectric spectroscopy. As the blends exhibit weak dynamic asymmetry, the obvious transitions in the melt rheology due to thermal concentration fluctuations are weak. This is further supported by the weak temperature dependence of the correlation length ( approximate to 10-12 angstrom) in the vicinity of demixing. Hence, various rheological techniques in both the temperature and frequency domains are adopted to evaluate the demixing temperature. The spinodal decomposition temperature is manifested in an increase in the miscibility gap in the presence of MWCNTs. Furthermore, MWCNTs lead to a significant slowdown of the segmental dynamics in the blends. Thermally induced phase separation in the PMMA/SAN blends lead to selective localization of MWCNTs in the PMMA phase. This further manifests itself in a significant increase in the melt conductivity.
Resumo:
Single-walled nanohorns (SWNHs) have been prepared by sub-merged arc discharge of graphite electrodes in liquid nitrogen. The samples were examined by scanning electron microscopy, transmission electron microscopy and Raman spectroscopy. Nitrogen and boron doped SWNHs have been prepared by the sub-merged arc discharge method using melamine and elemental boron as precursors. Intensification of Raman D-band and stiffening of G-band has been observed in the doped samples. The electrical resistance of the SWNHs varies in opposite directions with nitrogen and boron doping. Functionalization of SWNHs through amidation has been carried out for solubilizing them in non-polar solvents. Water-soluble SWNHs have been produced by acid treatment and non-covalent functionalization with a coronene salt. SWNHs have been decorated with nanoparticles of Au, Ag and Pt. Interaction of electron donor (tetrathiafulvalene, TTF) and acceptor molecules (tetracyanoethylene, TCNE) with SWNHs has been investigated by Raman spectroscopy. Progressive softening and stiffening of Raman G-band has been observed respectively with increase in the concentration of TTF and TCNE.
Resumo:
Three isomeric meso-SiMe3C6H4 substituted BODIPYs have been synthesized and their optical properties studied. The constitutional isomers show similar absorption properties but vastly different emissive properties as a result of their different conformational flexibility. Fluorine-19 NMR study is used to unravel the conformational state of the BODIPY isomers at a molecular level. (C) 2013 Elsevier B. V. All rights reserved.
Resumo:
We study the performance of a hybrid Graphene-Boron Nitride armchair nanoribbon (a-GNR-BN) n-MOSFET at its ballistic transport limit. We consider three geometric configurations 3p, 3p + 1, and 3p + 2 of a-GNR-BN with BN atoms embedded on either side (2, 4, and 6 BN) on the GNR. Material properties like band gap, effective mass, and density of states of these H-passivated structures are evaluated using the Density Functional Theory. Using these material parameters, self-consistent Poisson-Schrodinger simulations are carried out under the Non Equilibrium Green's Function formalism to calculate the ballistic n-MOSFET device characteristics. For a hybrid nanoribbon of width similar to 5 nm, the simulated ON current is found to be in the range of 265 mu A-280 mu A with an ON/OFF ratio 7.1 x 10(6)-7.4 x 10(6) for a V-DD = 0.68 V corresponding to 10 nm technology node. We further study the impact of randomly distributed Stone Wales (SW) defects in these hybrid structures and only 2.5% degradation of ON current is observed for SW defect density of 3.18%. (C) 2014 AIP Publishing LLC.
Resumo:
Hippocampal neurons are affected by chronic stress and have a high density of cytoplasmic mineralocorticoid and glucocorticoid receptors (MR and GR). Detailed studies on the genomic effects of the stress hormone corticosterone at physiologically relevant concentrations on different steps in synaptic transmission are limited. In this study, we tried to delineate how activation of MR and GR by different concentrations of corticosterone affects synaptic transmission at various levels. The effect of 3-h corticosterone (25, 50, and 100nM) treatment on depolarization-mediated calcium influx, vesicular release and properties of miniature excitatory post-synaptic currents (mEPSCs) were studied in cultured hippocampal neurons. Activation of MR with 25nM corticosterone treatment resulted in enhanced depolarization-mediated calcium influx via a transcription-dependent process and increased frequency of mEPSCs with larger amplitude. On the other hand, activation of GR upon 100nM corticosterone treatment resulted in increase in the rate of vesicular release via the genomic actions of GR. Furthermore, GR activation led to significant increase in the frequency of mEPSCs with larger amplitude and faster decay. Our studies indicate that differential activation of the dual receptor system of MR and GR by corticosterone targets the steps in synaptic transmission differently.
Resumo:
The elastic behavior of single-walled boron nitride nanotubes is studied under axial and torsional loading. Molecular dynamics simulation is carried out with a tersoff potential for modeling the interatomic interactions. Different chiral configurations with similar diameter are considered to study the effect of chirality on the elastic and shear moduli. Furthermore, the effects of tube length on elastic modulus are also studied by considering different aspects ratios. It is observed that both elastic and shear moduli depend upon the chirality of a nanotube. For aspect ratios less than 15, the elastic modulus reduces monotonically with an increase in the chiral angle. For chiral nanotubes, the torsional response shows a dependence on the direction of loading. The difference between the shear moduli against and along the chiral twist directions is maximum for chiral angle of 15 degrees, and zero for zigzag (0 degrees) and armchair (30 degrees) configurations. (C) 2014 AIP Publishing LLC.
Resumo:
In this study, the effect of nano-B4C addition on the microstructural and the mechanical behavior of pure Mg are investigated. Pure Mg-metal reinforced with different amounts of nano-size B4C particulates were synthesized using the disintegrated melt deposition technique followed by hot extrusion. Microstructural characterization of the developed Mg/x-B4C composites revealed uniform distribution of nano-B4C particulates and significant grain refinement. Electron back scattered diffraction (EBSD) analyses showed presence of relatively more recrystallized grains and absence of fiber texture in Mg/B4C nanocomposites when compared to pure Mg. The evaluation of mechanical properties indicated a significant improvement in tensile properties of the composites. The significant improvement in tensile ductility (similar to 180% increase with respect to pure Mg) is among the highest observed when compared to the pure Mg based nanocomposites existing in the current literature. The superior mechanical properties of the Mg/B4C nanocomposites are attributed to the uniform distribution of the nanoparticles and the tendency for texture randomization (absence of fiber texture) achieved due to the nano-B4C addition. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
The addition of B, up to about 0.1 wt%, to Ti-6Al-4V (Ti64) reduces its as-cast grain and colony sizes by an order of magnitude. In this paper, the creep resistance of this alloy modified with 0.06 and 0.11 wt% B additions was investigated in the temperature range of 475-550 degrees C and compared with that of the base alloy. Conventional dead-weight creep tests as well as stress relaxation tests were employed for this purpose. Experimental results show that the B addition enhances both elevated temperature strength and creep properties of Ti64, especially at the lower end of the temperatures investigated. The steady state creep rate in the alloy with 0.11 wt% B was found to be an order of magnitude lower than that in the base alloy, and both the strain at failure as well as the time for rupture increases with the B content. These marked improvements in the creep resistance due to B addition to Ti64 were attributed primarily to the increased number of inter-phase interfaces - a direct consequence of the microstructural refinement that occurs with the B addition - that provide resistance to dislocation motion. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
The design and synthesis of a new tri- and tetracoordinate boron conjugate is reported. The conjugate shows broad near-IR emission (similar to 625-850 nm) and is found to be a selective colorimetric and ratiometric sensor for fluoride ions.
Resumo:
The localization and dispersion quality of as received NH2 terminated multiwall carbon nanotubes (MWNT-I) and ethylene diamine (EDA) functionalized MWNTs in melt mixed blends of polycarbonate ( PC) and poly(styrene-co-acrylonitrile) (SAN) were assessed in this study using rheo-electrical and electromagnetic interference (EMI) shielding measurements. In order to improve the dispersion quality and also to selectively localize MWNTs in the PC phase of the blends, EDA was grafted onto MWNTs by two different strategies like diazonium reaction of the para-substituted benzene ring of MWNTs with EDA ( referred to as MWNT-II) and acylation of carboxyl functionalized MWNTs with thionyl chloride ( referred to as MWNT-III). By this approach we could systematically vary the concentration of NH2 functional groups on the surface of MWNTs at a fixed concentration (1 wt%) in PC/SAN blends. XPS was carried to evaluate the % concentration of N in different MWNTs and was observed to be highest for MWNT-III manifesting in a large surface coverage of EDA on the surface of MWNTs. Viscoelastic properties and melt electrical conductivities were measured to assess the dispersion quality of MWNTs using a rheo-electrical set-up both in the quiescent as well as under steady shear conditions. Rheological properties revealed chain scission of PC in the presence of MWNT-III which is due to specific interactions between EDA and PC leading to smaller PC grafts on the surface of MWNTs. The observed viscoelastic properties in the blends were further correlated with the phase morphologies under quiescent and annealed conditions. Electromagnetic interference (EMI) shielding effectiveness in X and K-u-band frequencies were measured to explore these composites for EMI shielding applications. Interestingly, MWNT-II showed the highest electrical conductivity and EMI shielding in the blends.
Resumo:
Structural characterization of electrodeposited boron was carried out by using transmission electron microscopy and Raman spectroscopy. Electron diffraction and phase contrast imaging were carried out by using transmission electron microscopy. Phase identification was done based on the analysis of electron diffraction patterns and the power spectrum calculated from the lattice images from thin regions of the sample. Raman spectroscopic examination was carried out to study the nature of bonding and the allotropic form of boron obtained after electrodeposition. The results obtained from transmission electron microscopy showed the presence of nanocrystallites embedded in an amorphous mass of boron. Raman microscopic studies showed that amorphous boron could be converted to its crystalline form at high temperatures.
Resumo:
Groundwater contamination is a serious concern in India. Major geogenic contaminants include fluoride, arsenic and iron, while common anthropogenic contaminants include nitrate, metals, organics and microbial contamination. Besides, known point and diffuse sources, groundwater c ontamination from inf iltration of pit to ilet leachate is an emerging concern. The study area of this paper is Kolar district in Karnataka that is hot spot of fluoride contamination. The absence of fluoride contamination in Mulbagal town and the alterations in groundwater chemistry from infiltration of pit toilet leachate motivated the author to examine the possible linkages between anthropogenic contamination and fluoride concentration in groundwater of Mulbagal town. Analysis of the groundwater chemistry revealed that the groundwater in Mulbagal town is under saturated with respect to calcite that suppresses the dissolution of fluorite and the fluoride concentration in the groundwater. The slightly acidic pH of the groundwater is considered responsible to facilitate calcite dissolution under saturation.