370 resultados para Varible amplitude


Relevância:

10.00% 10.00%

Publicador:

Resumo:

By using the method of operators of multiple scales, two coupled nonlinear equations are derived, which govern the slow amplitude modulation of surface gravity waves in two space dimensions. The equations of Davey and Stewartson, which also govern the two-dimensional modulation of the amplitude of gravity waves, are derived as a special case of our equations. For a fully dispersed wave, symmetric about a point which moves with the group velocity, the coupled equations reduce to a nonlinear Schrödinger equation with extra terms representing the effect of the curvature of the wavefront.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we study performance of Katz method of computing fractal dimension of waveforms, and its estimation accuracy is compared with Higuchi's method. The study is performed on four synthetic parametric fractal waveforms for which true fractal dimensions can be calculated, and real sleep electroencephalogram. The dependence of Katz's fractal dimension on amplitude, frequency and sampling frequency of waveforms is noted. Even though the Higuchi's method has given more accurate estimation of fractal dimensions, the study suggests that the results of Katz's based fractal dimension analysis of biomedical waveforms have to be carefully interpreted.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sensory nerve action potentials (SNAPs) and compound nerve action potentials (CNAPs) were recorded from 25 normal subjects and 21 hanseniasis patients following electrical stimulation of the median nerve at the wrist. The various nerve conduction parameters from the affected nerves of the patients were compared with those from the clinically normal nerves of patients as well as data from healthy individuals. Analysis of the data and clinical correlation studies indicate the suitability of amplitudes of the SNAPs and CNAPs rather than the nerve conduction velocities in better characterizing the neuropathy of the patients. Significantly reduced amplitudes of responses from clinically unaffected nerves of patients indicate an early stage of neuropathy, thus being of predictive value. Further, a discriminant classifier, trained on data from clinically affected nerves of patients, classified most of the data from clinically unaffected nerves of patients as abnormal. This indicates that clinical neurophysiological studies can reveal leprous neuropathy much before it becomes clinically evident by means of sensory or motor loss. A discriminant score involving only the parameters of motor threshold, amplitude of digit potential and palm nerve conduction velocity is able to classify almost all of the normal and abnormal responses. The authors hope that further confirmative studies might ultimately lead to the use of the study of distal sensory conduction in the upper limbs in possible screening of a population exposed to Mycobacterium leprae. On the other hand, misclassification of a normal person occurred and suggests that further refinement of the methods is necessary in order to facilitate wider use of the methods under held conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents the results of a series of servo-controlled cyclic triaxial tests and numerical simulations using the three- dimensional discrete element method (DEM) on post-liquefaction undrained monotonic strength of granular materials. In a first test series,undrained monotonic tests were carried out after dissipating the excess pore water pressure developed during liquefaction. The influence of different parameters such as amplitude of axial strain,relative density and confining pressure prior to liquefaction on the post-liquefaction undrained response have been investigated.The results obtained highlight an insignificant influence of amplitude of axial strain, confining pressure and a significant influence of relative density on the post-liquefaction undrained monotonic stress-strain response.In the second series, undrained monotonic tests were carried out on similar triaxial samples without dissipating the excess pore water pressure developed during liquefaction. The results highlight that the amplitude of axial strain prior to liquefaction has a significant influence on the post-liquefaction undrained monotonic response.In addition,DEM simulations have been carried out on an assembly of spheres to simulate post-liquefaction behaviour.The simulations were very similar to the experiments with an objective to understand the behaviour of monotonic strength of liquefied samples from the grain scale. The numerical simulations using DEM have captured qualitatively all the features of the post-liquefaction undrained monotonic response in a manner similar to that of the experiments.In addition,a detailed study on the evolution of micromechanical parameters such as the average coordination number and induced anisotropic coefficients has been reported during the post-liquefaction undrained monotonic loading.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Regular electrical activation waves in cardiac tissue lead to the rhythmic contraction and expansion of the heart that ensures blood supply to the whole body. Irregularities in the propagation of these activation waves can result in cardiac arrhythmias, like ventricular tachycardia (VT) and ventricular fibrillation (VF), which are major causes of death in the industrialised world. Indeed there is growing consensus that spiral or scroll waves of electrical activation in cardiac tissue are associated with VT, whereas, when these waves break to yield spiral- or scroll-wave turbulence, VT develops into life-threatening VF: in the absence of medical intervention, this makes the heart incapable of pumping blood and a patient dies in roughly two-and-a-half minutes after the initiation of VF. Thus studies of spiral- and scroll-wave dynamics in cardiac tissue pose important challenges for in vivo and in vitro experimental studies and for in silico numerical studies of mathematical models for cardiac tissue. A major goal here is to develop low-amplitude defibrillation schemes for the elimination of VT and VF, especially in the presence of inhomogeneities that occur commonly in cardiac tissue. We present a detailed and systematic study of spiral- and scroll-wave turbulence and spatiotemporal chaos in four mathematical models for cardiac tissue, namely, the Panfilov, Luo-Rudy phase 1 (LRI), reduced Priebe-Beuckelmann (RPB) models, and the model of ten Tusscher, Noble, Noble, and Panfilov (TNNP). In particular, we use extensive numerical simulations to elucidate the interaction of spiral and scroll waves in these models with conduction and ionic inhomogeneities; we also examine the suppression of spiral- and scroll-wave turbulence by low-amplitude control pulses. Our central qualitative result is that, in all these models, the dynamics of such spiral waves depends very sensitively on such inhomogeneities. We also study two types of control chemes that have been suggested for the control of spiral turbulence, via low amplitude current pulses, in such mathematical models for cardiac tissue; our investigations here are designed to examine the efficacy of such control schemes in the presence of inhomogeneities. We find that a local pulsing scheme does not suppress spiral turbulence in the presence of inhomogeneities; but a scheme that uses control pulses on a spatially extended mesh is more successful in the elimination of spiral turbulence. We discuss the theoretical and experimental implications of our study that have a direct bearing on defibrillation, the control of life-threatening cardiac arrhythmias such as ventricular fibrillation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The polarization position-angle swings that have been measured in a number of BL Lacertae objects and highly variable quasars are interpreted in terms of shock waves which illuminate (by enhanced synchrotron radiation) successive transverse cross sections of a magnetized, relativistic jet. The jet is assumed to have a nonaxisymmetric magnetic field configuration of the type discussed in the companion paper on the equilibria of force-free jets. For a jet that is viewed at a small angle to the axis, the passage of a shock will give rise to an apparent rotation of the polarization position angle whose amplitude can be substantially larger than 180 deg. The effects of freely propagating shocks are compared with those of bow shocks which form in front of dense obstacles in the jet, and specific applications to 0727 - 115 and BL Lacertae are considered. In the case of 0727 - 115, it is pointed out that the nonuniformity of the swing rate and the apparent oscillations of the degree of polarization could be a consequence of relativistic aberration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We propose a self-regularized pseudo-time marching scheme to solve the ill-posed, nonlinear inverse problem associated with diffuse propagation of coherent light in a tissuelike object. In particular, in the context of diffuse correlation tomography (DCT), we consider the recovery of mechanical property distributions from partial and noisy boundary measurements of light intensity autocorrelation. We prove the existence of a minimizer for the Newton algorithm after establishing the existence of weak solutions for the forward equation of light amplitude autocorrelation and its Frechet derivative and adjoint. The asymptotic stability of the solution of the ordinary differential equation obtained through the introduction of the pseudo-time is also analyzed. We show that the asymptotic solution obtained through the pseudo-time marching converges to that optimal solution provided the Hessian of the forward equation is positive definite in the neighborhood of optimal solution. The superior noise tolerance and regularization-insensitive nature of pseudo-dynamic strategy are proved through numerical simulations in the context of both DCT and diffuse optical tomography. (C) 2010 Optical Society of America.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the title compound, C17H10Br2O5, the chromene ring is almost planar with minimal puckering [total puckering amplitude = 0.067 (4) angstrom]. The dihedral angle between chromeme ring system and phenyl ring is 3.7 (2)degrees. The crystal structure is stabilized by intermolecular C-H center dot center dot center dot O interactions and an intramolecular O-H center dot center dot center dot O hydrogen bond also occurs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Carbon fiber reinforced polymer (CFRP) composite specimens with different thickness, geometry, and stacking sequences were subjected to fatigue spectrum loading in stages. Another set of specimens was subjected to static compression load. On-line acoustic Emission (AE) monitoring was carried out during these tests. Two artificial neural networks, Kohonen-self organizing feature map (KSOM), and multi-layer perceptron (MLP) have been developed for AE signal analysis. AE signals from specimens were clustered using the unsupervised learning KSOM. These clusters were correlated to the failure modes using available a priori information such as AE signal amplitude distributions, time of occurrence of signals, ultrasonic imaging, design of the laminates (stacking sequences, orientation of fibers), and AE parametric plots. Thereafter, AE signals generated from the rest of the specimens were classified by supervised learning MLP. The network developed is made suitable for on-line monitoring of AE signals in the presence of noise, which can be used for detection and identification of failure modes and their growth. The results indicate that the characteristics of AE signals from different failure modes in CFRP remain largely unaffected by the type of load, fiber orientation, and stacking sequences, they being representatives of the type of failure phenomena. The type of loading can have effect only on the extent of damage allowed before the specimens fail and hence on the number of AE signals during the test. The artificial neural networks (ANN) developed and the methods and procedures adopted show significant success in AE signal characterization under noisy environment (detection and identification of failure modes and their growth).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The sea level pressure (SLP) variability in 30-60 day intraseasonal timescales is investigated using 25 years of reanalysis data addressing two issues. The first concerns the non-zero zonal mean component of SLP near the equator and its meridional connections, and the second concerns the fast eastward propagation (EP) speed of SLP compared to that of zonal wind. It is shown that the entire globe resonates with high amplitude wave activity during some periods which may last for few to several months, followed by lull periods of varying duration. SLP variations in the tropical belt are highly coherent from 25A degrees S to 25A degrees N, uncorrelated with variations in mid latitudes and again significantly correlated but with opposite phase around 60A degrees S and 65A degrees N. Near the equator (8A degrees S-8A degrees N), the zonal mean contributes significantly to the total variance in SLP, and after its removal, SLP shows a dominant zonal wavenumber one structure having a periodicity of 40 days and EP speeds comparable to that of zonal winds in the Indian Ocean. SLP from many of the atmospheric and coupled general circulation models show similar behaviour in the meridional direction although their propagation characteristics in the tropical belt differ widely.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Magnetorheological dampers are intrinsically nonlinear devices, which make the modeling and design of a suitable control algorithm an interesting and challenging task. To evaluate the potential of magnetorheological (MR) dampers in control applications and to take full advantages of its unique features, a mathematical model to accurately reproduce its dynamic behavior has to be developed and then a proper control strategy has to be taken that is implementable and can fully utilize their capabilities as a semi-active control device. The present paper focuses on both the aspects. First, the paper reports the testing of a magnetorheological damper with an universal testing machine, for a set of frequency, amplitude, and current. A modified Bouc-Wen model considering the amplitude and input current dependence of the damper parameters has been proposed. It has been shown that the damper response can be satisfactorily predicted with this model. Second, a backstepping based nonlinear current monitoring of magnetorheological dampers for semi-active control of structures under earthquakes has been developed. It provides a stable nonlinear magnetorheological damper current monitoring directly based on system feedback such that current change in magnetorheological damper is gradual. Unlike other MR damper control techniques available in literature, the main advantage of the proposed technique lies in its current input prediction directly based on system feedback and smooth update of input current. Furthermore, while developing the proposed semi-active algorithm, the dynamics of the supplied and commanded current to the damper has been considered. The efficiency of the proposed technique has been shown taking a base isolated three story building under a set of seismic excitation. Comparison with widely used clipped-optimal strategy has also been shown.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bulk Ge15Te83Si2 glass has been found to exhibit memory-type switching for 1 mA current with a threshold electric field of 7.3 kV/cm. The electrical set and reset processes have been achieved with triangular and rectangular pulses, respectively, of 1 mA amplitude. In situ Raman scattering studies indicate that the degree of disorder in Ge15Te83Si2 glass is reduced from off to set state. The local structure of the sample under reset condition is similar to that in the off state. The Raman results are consistent with the switching results which indicate that the Ge15Te83Si2 glass can be set and reset easily. (C) 2007 American Institute of Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Wave propagation and its frequency bandgaps in a parametrically modulated composite laminate are reported in this paper. The modulated properties under considerations are due to periodic microstructure, for example honeycomb core sandwich composite, which can be parameterized and homogenized in a suitable scale. Wave equations are derived by assuming a third-order shear deformation theory. Homogenization of the wave equations is carried out in the scale of wavelength. In-plane wave and flexural-shear wave dispersions are obtained for a range of values of a stiffness modulation coefficient (alpha). A clear pattern of stop-bands is observed for alpha >= 4. To validate the band-gap phenomena, we take recourse to time domain response obtained from finite element simulation. As predicted by the proposed analytical technique, a distinct correlation between the chosen frequency band and the simulated wave arrival time and amplitude reduction is found. This promises practical applications of the proposed analytical technique to designing parametrically modulated composite laminate for wave suppression. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is shown that pure exponential discs in spiral galaxies are capable of supporting slowly varying discrete global lopsided modes, which can explain the observed features of lopsidedness in the stellar discs. Using linearized fluid dynamical equations with the softened self-gravity and pressure of the perturbation as the collective effect, we derive self-consistently a quadratic eigenvalue equation for the lopsided perturbation in the galactic disc. On solving this, we find that the ground-state mode shows the observed characteristics of the lopsidedness in a galactic disc, namely the fractional Fourier amplitude A(1), increases smoothly with the radius. These lopsided patterns precess in the disc with a very slow pattern speed with no preferred sense of precession. We show that the lopsided modes in the stellar disc are long-lived because of a substantial reduction (approximately a factor of 10 compared to the local free precession rate) in the differential precession. The numerical solution of the equations shows that the groundstate lopsided modes are either very slowly precessing stationary normal mode oscillations of the disc or growing modes with a slow growth rate depending on the relative importance of the collective effect of the self-gravity. N-body simulations are performed to test the spontaneous growth of lopsidedness in a pure stellar disc. Both approaches are then compared and interpreted in terms of long-lived global m = 1 instabilities, with almost zero pattern speed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Surface texture of harder mating surfaces plays an important role during sliding against softer materials and hence the importance of characterizing the surfaces in terms of roughness parameters. In the present investigation, basic studies were conducted using inclined pin-on-plate sliding tester to understand the surface texture effect of hard surfaces on coefficient of friction and transfer layer formation. A tribological couple made of a super purity aluminium pin against steel plate was used in the tests. Two surface parameters of steel plates, namely roughness and texture, were varied in the tests. It was observed that the transfer layer formation and the coefficient of friction along with its two components, namely, the adhesion and plowing, are controlled by the surface texture and are independent of surface roughness (R-a). Among the various surface roughness parameters, the average or the mean slope of the profile was found to explain the variations best. Under lubricated conditions, stick-slip phenomena was observed, the amplitude of which depends on the plowing component of friction. The presence of stick-slip motion under lubricated conditions could be attributed to the molecular deformation of the lubricant component confined between asperities. (C) 2009 Elsevier B. V. All rights reserved.