118 resultados para Thin Film Solar Cells
Resumo:
The performance of a two-phase heat transport device such as the loop heat pipe is influenced by the evaporative heat transfer coefficient in the evaporator. From previous experiments with loop heat pipes, it has been observed that fluids with a high heat pipe figure of merit have a high heat transfer coefficient. Considering an evaporating extended thin film, this paper theoretically corroborates this experimental observation by deriving a direct link between the evaporative heat flux at the interface and the fluid figures of merit (namely interline heat flow parameter and heat pipe figure of merit) in the thin film. Numerical experiments with different working fluids clearly show that a fluid with high figure of merit also has a high cumulative heat transfer in the microregion encompassing the evaporating thin film. Thus, a loop heat pipe or heat pipe that uses a working fluid with a high interline heat flow parameter and heat pipe figure of merit will lead to a high evaporative heat transfer coefficient.
Resumo:
Organic bulk heterojunction solar cells were fabricated under identical experimental conditions, except by varying the solvent polarity used for spin coating the active layer components and their performance was evaluated systematically. Results showed that presence of nitrobenzene-chlorobenzene composition governs the morphology of active layer formed, which is due to the tuning of solvent polarity as well as the resulting solubility of the P3HT:PCBM blend. Trace amount of nitrobenzene favoured the formation of better organised P3HT domains, as evident from conductive AFM, tapping mode AFM and surface, and cross-sectional SEM analysis. The higher interfacial surface area thus generated produced cells with high efficiency. But, an increase in the nitrobenzene composition leads to a decrease in cell performance, which is due to the formation of an active layer with larger size polymer domain networks with poor charge separation possibility. (C) 2014 AIP Publishing LLC.
Resumo:
TIN thin films with (200) fibre texture are deposited on Cu substrate at room temperature using reactive magnetron sputtering. They exhibit a discharge capacity of 172 mu Ah cm(-2) mu m(-1) (300 mAh g(-1)) in a non-aqueous electrolyte containing a Li salt. There is a graded decrease in discharge capacity when cycled between 0.01 and 3.0 V. Electron microscopy investigations indicate significant changes in surface morphology of the cycled TiN electrodes in comparison with the as deposited TiN films. From XPS depth profile analysis, it is inferred that Li intercalated TIN films consist of lithium compounds, hydroxyl groups, titanium sub oxides and TiN. Lithium diffusivity and reactivity decrease with increase in depth and the major reaction with lithium takes place at film surface and grain boundaries. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
We report here the growth of epitaxial Co metal thin film on c-plane sapphire by pulsed laser deposition (RD) using Co:ZnO target utilizing the composition inhomogeneity of the corresponding plasma. Two distinct plasma composition regions have been observed using heavily alloyed Co0.6Zn0.4O target. The central and intense region of the plasma grows Co:ZnO film; the extreme tail grows only Co metal with no trace of either ZnO or Co oxide In between the two extremes, mixed phases (Co +Co-oxides +Co:ZnO) were observed. The Co metal thin film grown in this way shows room temperature ferromagnetism with large in plane magnetization similar to 1288 emu cm(-3) and a coerciviLy of similar to 230 Oe with applied field parallel to the film-substrate interface. Carrier density of the film is similar to 10(22) cm(-3). The film is epiLaxial single phase Co metal which is confirmed by both X-ray diffraction and transmission electron microscopy characierizaLions. Planar Hall Effect (PHE) and Magneto Optic Kerr Effect (MOKE) measurements confirm that the film possesses similar attributes of Co metal. The result shows that the epiLaxial Co metal thin film can be grown from its oxides in the PLD. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
We present a photoanode for dye-sensitized solar cell (DSC) based on ZnO nanoshell deposited by atomic layer deposition at 150 degrees C on a mesoporous insulating template. An ultrathin layer of ZnO between. 3 and 6 nm, which exhibits quantum confinement effect, is found to be sufficient to transport the photogenerated electrons to the external contacts and exhibits near-unity collection efficiency. A 6 nm ZnO nanoshell on a 2.5 mu m mesoporous nanoparticle Al2O3 template yields photovoltaic power conversion efficiency (PCE) of 4.2% in liquid DSC. Perovskite absorber (CH3NH3PbI3) based solid state solar cells made with similar ZnO nanostructures lead to a high PCE of 7%.
Resumo:
Non-crystalline semiconductor based thin film transistors are the building blocks of large area electronic systems. These devices experience a threshold voltage shift with time due to prolonged gate bias stress. In this paper we integrate a recursive model for threshold voltage shift with the open source BSIM4V4 model of AIM-Spice. This creates a tool for circuit simulation for TFTs. We demonstrate the integrity of the model using several test cases including display driver circuits.
Resumo:
Ultrasonic strain sensing performance of the large area PVDF with Inter Digital Electrodes (IDE) is studied in this work. Procedure to obtain IDE on a beta-phase PVDF is explained. PVDF film with IDE is bonded on a plate structure and is characterized for its directional sensitivity at different frequencies. Guided waves are induced on the IDE-PVDF sensor from different directions by placing a piezoelectric wafer actuator at different angles. Strain induced on the IDE-PVDF sensor by the guided waves in estimated by using a Laser Doppler Vibrometer (LDV) and a wave propagation model. Using measured voltage response from IDE-PVDF sensor and the strain measurements from LDV the piezoelectric coefficient is estimated in various directions. The variation of 11 e at different angles shows directional sensitivity of the IDE-PVDF sensor to the incident guided waves. The present study provides an effective technique to characterize thin film piezoelectric sensors for ultrasonic strain sensing at very high frequencies of 200 kHz. Often frequency of the guided wave is changed to alter the wavelength to interrogate damages of different sizes in Structural Health Monitoring (SHM) applications. The unique property of directional sensitivity combined with frequency tunability makes the IDE-PVDF sensor most suitable for SHM of structures.
Resumo:
The dibenzyl derivative of poly(3,4-propylenedioxythiophene) (PProDOT-Bz(2)) thin film is deposited onto ITO-coated glass substrate by electropolymerization technique. The electropolymerization of ProDOT-Bz(2) is carried out by a three-electrode electrochemical cell. The cyclic voltammogram shows the redox properties of electrochemically prepared films deposited at different scan rates. The thin films prepared were characterized for its morphological properties to study the homogeniety. Classic six-layer structure of PProDOT-Bz(2) electrochromic device using this material was fabricated and reported for the first and its characterizations such as spectroelectrochemical, switching kinetics, and chronoamperometric studies are performed. The color contrast of the thin film and the device achieved are 64 and 40%, respectively, at lambda(max) (628 nm). The switching time is recorded and the observed values are 5 s from the coloring state to the bleaching state and vice versa. The chronoamperometry shows that the device performed up to 400 cycles, and it is capable of working up to 35 cycles without any degradation. (C) 2014 Wiley Periodicals, Inc.
Resumo:
Thin film transistors (TFTs) on elastomers promise flexible electronics with stretching and bending. Recently, there have been several experimental studies reporting the behavior of TFTs under bending and buckling. In the presence of stress, the insulator capacitance is influenced due to two reasons. The first is the variation in insulator thickness depending on the Poisson ratio and strain. The second is the geometric influence of the curvature of the insulator-semiconductor interface during bending or buckling. This paper models the role of curvature on TFT performance and brings to light an elegant result wherein the TFT characteristics is dependent on the area under the capacitance-distance curve. The paper compares models with simulations and explains several experimental findings reported in literature. (C) 2014 AIP Publishing LLC.
Resumo:
SnS quantum dot solar cell is fabricated by Successive Ionic Layer Adsorption and Reaction (SILAR) method. SnS layer is optimized by different SILAR cycles of deposition. The particle size increased with the increase in number of SILAR cycles. Cu2S coated FTO is used as counter electrode against the conventional Platinum electrode. On comparison with a cell having a counter electrodeelectrolyte combination of Platinum-Iodine, Cu2S-polysulfide combination is found to improve both the short circuit current and fill factor of the solar cell. A maximum efficiency of 0.54% is obtained with an open circuit voltage of 311 mV and short circuit current density of 4.86 mA/cm. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
All solid state batteries are essential candidate for miniaturizing the portable electronics devices. Thin film batteries are constructed by layer by layer deposition of electrode materials by physical vapour deposition method. We propose a promising novel method and unique architecture, in which highly porous graphene sheet embedded with SnO2 nanowire could be employed as the anode electrode in lithium ion thin film battery. The vertically standing graphene flakes were synthesized by microwave plasma CVD and SnO2 nanowires based on a vapour-liquid-solid (VLS) mechanism via thermal evaporation at low synthesis temperature (620 degrees C). The graphene sheet/SnO2 nanowire composite electrode demonstrated stable cycling behaviours and delivered a initial high specific discharge capacity of 1335 mAh g(-1) and 900 mAh g(-1) after the 50th cycle. Furthermore, the SnO2 nanowire electrode displayed superior rate capabilities with various current densities.
Resumo:
Two novel triads based on a diketopyrrolopyrrole (DPP) central core and two 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) units attached by thiophene rings have been synthesised having high molar extinction coefficients. These triads were characterised and used as donor materials in small molecule, solution processable organic solar cells. Both triads were blended with PC71BM as an acceptor in different ratios by wt% and their photovoltaic properties were studied. For both the triads a modest photovoltaic performance was observed, having an efficiency of 0.65%. Moreover, in order to understand the ground and excited state properties and vertical absorption profile of DPP and BODIPY units within the triads, theoretical DFT and TDDFT calculations were performed.
Resumo:
Power conversion efficiency of a solar cell is a complex parameter which usually hides the molecular details of the charge generation process. For rationally tailoring the overall device efficiency of the dye-sensitized solar cell, detailed molecular understanding of photoinduced reactions at the dye-TiO2 interface has to be achieved. Recently, near-IR absorbing diketopyrrolopyrrole-based (DPP) low bandgap polymeric dyes with enhanced photostabilities have been used for TiO2 sensitization with moderate efficiencies. To improve the reported device performances, a critical analysis of the polymerTiO(2) interaction and electron transfer dynamics is imperative. Employing a combination of time-resolved optical measurements complemented by low temperature EPR and steady-state Raman spectroscopy on polymerTiO(2) conjugates, we provide direct evidence for photoinduced electron injection from the TDPP-BBT polymer singlet state into TiO2 through the C-O group of the DPP-core. A detailed excited state description of the electron transfer process in films reveals instrument response function (IRF) limited (<110 fs) charge injection from a minor polymer fraction followed by a picosecond recombination. The major fraction of photoexcited polymers, however, does not show injection indicating pronounced ground state heterogeneity induced due to nonspecific polymerTiO(2) interactions. Our work therefore underscores the importance of gathering molecular-level insight into the competitive pathways of ultrafast charge generation along with probing the chemical heterogeneity at the nanoscale within the polymerTiO2 films for optimizing photovoltaic device efficiencies.
Resumo:
Different types of Large Carbon Cluster (LCC) layers are synthesized by a single-step pyrolysis technique at various ratios of precursor mixture. The aim is to develop a fast responsive and stable thermal gauge based on a LCC layer which has relatively good electrical conduction in order to use it in the hypersonic flow field. The thermoelectric property of the LCC layer has been studied. It is found that these carbon clusters are sensitive to temperature changes. Therefore suitable thermal gauges were developed for blunt cone bodies and were tested in hypersonic shock tunnels at a flow Mach number of 6.8 to measure aerodynamic heating. The LCC layer of this thermal gauge encounters high shear forces and a hostile environment for test duration in the range of a millisecond. The results are favorable to use large carbon clusters as a better sensor than a conventional platinum thin film gauge in view of fast responsiveness and stability.