216 resultados para Sequential error ratio


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we propose a novel S/D engineering for dual-gated Bilayer Graphene (BLG) Field Effect Transistor (FET) using doped semiconductors (with a bandgap) as source and drain to obtain unipolar complementary transistors. To simulate the device, a self-consistent Non-Equilibrium Green's Function (NEGF) solver has been developed and validated against published experimental data. Using the simulator, we predict an on-off ratio in excess of 10(4) and a subthreshold slope of similar to 110mV/decade with excellent scalability and current saturation, for a 20nm gate length unipolar BLG FET. However, the performance of the proposed device is found to be strongly dependent on the S/D series resistance effect. The obtained results show significant improvements over existing reports, marking an important step towards bilayer graphene logic devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sequential addition of vanadyl sulfate to a phosphate-buffered solution of H2O2 released oxygen only after the second batch of vanadyl. Ethanol added to such reaction mixtures progressively decreased oxygen release and increased oxygen consumption during oxidation of vanadyl by H2O2. Inclusion of ethanol after any of the three batches of vanadyl resulted in varying amounts of oxygen consumption, a property also shared by other alcohols (methanol, propanol and octanol). On increasing the concentration of ethanol, vanadyl sulfate or H2O2, both oxygen consumption and acetaldehyde formation increased progressively. Formation of acetaldehyde decreased with increase in the ratio of vanadyl:H2O2 above 2:1 and was undetectable with ethanol at 0.1 mM. The reaction mixture which was acidic in the absence of phosphate buffer (pH 7.0), released oxygen immediately after the first addition of vanadyl and also in presence of ethanol soon after initial rapid consumption of oxygen, with no accompanying acetaldehyde formation. The results underscore the importance of some vanadium complexes formed during vanadyl oxidation in the accompanying oxygen-transfer reactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel approach for lossless as well as lossy compression of monochrome images using Boolean minimization is proposed. The image is split into bit planes. Each bit plane is divided into windows or blocks of variable size. Each block is transformed into a Boolean switching function in cubical form, treating the pixel values as output of the function. Compression is performed by minimizing these switching functions using ESPRESSO, a cube based two level function minimizer. The minimized cubes are encoded using a code set which satisfies the prefix property. Our technique of lossless compression involves linear prediction as a preprocessing step and has compression ratio comparable to that of JPEG lossless compression technique. Our lossy compression technique involves reducing the number of bit planes as a preprocessing step which incurs minimal loss in the information of the image. The bit planes that remain after preprocessing are compressed using our lossless compression technique based on Boolean minimization. Qualitatively one cannot visually distinguish between the original image and the lossy image and the value of mean square error is kept low. For mean square error value close to that of JPEG lossy compression technique, our method gives better compression ratio. The compression scheme is relatively slower while the decompression time is comparable to that of JPEG.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

At the heart of understanding cellular processes lies our ability to explore the specific nature of communication between sequential information carrying biopolymers. However, the data extracted from conventional solution phase studies may not reflect the dynamics of communication between recognized partners as they occur in the crowded cellular milieu. We use the principle of immobilization of histidine-tagged biopolymers at a Ni(II)-encoded Langmuir monolayer to study sequence-specific protein-protein interactions in an artificially crowded environment The advantage of this technique lies in increasing the surface density of one of the interacting partners that allows us to study macromolecular interactions in a controlled crowded environment, but without compromising the speed of the reactions. We have taken advantage of this technique to follow the sequential assembly process of the multiprotein complex Escherichia coil RNA polymerase at the interface and also deciphered the role of one of the proteins, omega (omega), in the assembly pathway. Our reconstitution studies indicate that in the absence of molecular chaperones or other cofactors, omega (omega) plays a decisive role in refolding the largest protein beta prime (beta') and its recruitment into the multimeric assembly to reconstitute an active RNA polymerase. It was also observed that the monolayer had the ability to distinguish between sequence-specific and -nonspecific interactions despite the immobilization of one of the biomacromolecules. The technique provides a universal two-dimensional template for studying protein-ligand interactions while mimicking molecular crowding.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes a sensorless vector control scheme for general-purpose induction motor drives using the current error space phasor-based hysteresis controller. In this paper, a new technique for sensorless operation is developed to estimate rotor voltage and hence rotor flux position using the stator current error during zero-voltage space vectors. It gives a comparable performance with the vector control drive using sensors especially at a very low speed of operation (less than 1 Hz). Since no voltage sensing is made, the dead-time effect and loss of accuracy in voltage sensing at low speed are avoided here, with the inherent advantages of the current error space phasor-based hysteresis controller. However, appropriate device on-state drops are compensated to achieve a steady-state operation up to less than 1 Hz. Moreover, using a parabolic boundary for current error, the switching frequency of the inverter can be maintained constant for the entire operating speed range. Simple sigma L-s estimation is proposed, and the parameter sensitivity of the control scheme to changes in stator resistance, R-s is also investigated in this paper. Extensive experimental results are shown at speeds less than 1 Hz to verify the proposed concept. The same control scheme is further extended from less than 1 Hz to rated 50 Hz six-step operation of the inverter. Here, the magnetic saturation is ignored in the control scheme.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three classification techniques, namely, K-means Cluster Analysis (KCA), Fuzzy Cluster Analysis (FCA), and Kohonen Neural Networks (KNN) were employed to group 25 microwatersheds of Kherthal watershed, Rajasthan into homogeneous groups for formulating the basis for suitable conservation and management practices. Ten parameters, mainly, morphological, namely, drainage density (D-d), bifurcation ratio (R-b), stream frequency (F-u), length of overland flow (L-o), form factor (R-f), shape factor (B-s), elongation ratio (R-e), circulatory ratio (R-c), compactness coefficient (C-c) and texture ratio (T) are used for the classification. Optimal number of groups is chosen, based on two cluster validation indices Davies-Bouldin and Dunn's. Comparative analysis of various clustering techniques revealed that 13 microwatersheds out of 25 are commonly suggested by KCA, FCA and KNN i.e., 52%; 17 microwatersheds out of 25 i.e., 68% are commonly suggested by KCA and FCA whereas these are 16 out of 25 in FCA and KNN (64%) and 15 out of 25 in KNN and CA (60%). It is observed from KNN sensitivity analysis that effect of various number of epochs (1000, 3000, 5000) and learning rates (0.01, 0.1-0.9) on total squared error values is significant even though no fixed trend is observed. Sensitivity analysis studies revealed that microwatershecls have occupied all the groups even though their number in each group is different in case of further increase in the number of groups from 5 to 6, 7 and 8. (C) 2010 International Association of Hydro-environment Engineering and Research, Asia Pacific Division. Published by Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes a simple current error space vector based hysteresis controller for two-level inverter fed Induction Motor (IM) drives. This proposed hysteresis controller retains all advantages of conventional current error space vector based hysteresis controllers like fast dynamic response, simple to implement, adjacent voltage vector switching etc. The additional advantage of this proposed hysteresis controller is that it gives a phase voltage frequency spectrum exactly similar to that of a constant switching frequency space vector pulse width modulated (SVPWM) inverter. In this proposed hysteresis controller the boundary is computed online using estimated stator voltages along alpha and beta axes thus completely eliminating look up tables used for obtaining parabolic hysteresis boundary proposed in. The estimation of stator voltage is carried out using current errors along alpha and beta axes and steady state model of induction motor. The proposed scheme is simple and capable of taking inverter upto six step mode operation, if demanded by drive system. The proposed hysteresis controller based inverter fed drive scheme is simulated extensively using SIMULINK toolbox of MATLAB for steady state and transient performance. The experimental verification for steady state performance of the proposed scheme is carried out on a 3.7kW IM.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To meet the growing demands of the high data rate applications, suitable asynchronous schemes such as Fiber-Optic Code Division Multiple Access (FO-CDMA) are required in the last mile. FO-CDMA scheme offers potential benefits and at the same time it faces many challenges. Wavelength/Time (W/T) 2-D codes for use in FO-CDMA, can be classified mainly into two types: 1) hybrid codes and 2) matrix codes, to reduce the 'time' like property, have been proposed. W/T single-pulse-per-row (SPR) are energy efficient codes as this family of codes have autocorrelation sidelobes of '0', which is unique to this family and the important feature of the W/T multiple-pulses-per-row (MPR) codes is that the aspect ratio can be varied by trade off between wavelength and temporal lengths. These W/T codes have improved cardinality and spectral efficiency over other W/T codes and at the same time have lowest crosscorrelation values. In this paper, we analyze the performances of the FO-CDMA networks using W/T SPR codes and W/T MPR codes, with and without forward error correction (FEC) coding and show that with FEC there is dual advantage of error correction and reduced spread sequence length.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper considers the problem of spectrum sensing in cognitive radio networks when the primary user is using Orthogonal Frequency Division Multiplexing (OFDM). For this we develop cooperative sequential detection algorithms that use the autocorrelation property of cyclic prefix (CP) used in OFDM systems. We study the effect of timing and frequency offset, IQ-imbalance and uncertainty in noise and transmit power. We also modify the detector to mitigate the effects of these impairments. The performance of the proposed algorithms is studied via simulations. We show that sequential detection can significantly improve the performance over a fixed sample size detector.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A single source network is said to be memory-free if all of the internal nodes (those except the source and the sinks) do not employ memory but merely send linear combinations of the symbols received at their incoming edges on their outgoing edges. In this work, we introduce network-error correction for single source, acyclic, unit-delay, memory-free networks with coherent network coding for multicast. A convolutional code is designed at the source based on the network code in order to correct network- errors that correspond to any of a given set of error patterns, as long as consecutive errors are separated by a certain interval which depends on the convolutional code selected. Bounds on this interval and the field size required for constructing the convolutional code with the required free distance are also obtained. We illustrate the performance of convolutional network error correcting codes (CNECCs) designed for the unit-delay networks using simulations of CNECCs on an example network under a probabilistic error model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thermal power stations using pulverized coal as fuel generate large quantities of fly ash as a byproduct, which has created environmental and disposal problems. Using fly ash for gainful applications will solve these problems. Among the various possible uses for fly ash, the most massive and effective utilization is in geotechnical engineering applications like backfill material, construction of embankments, as a subbase material, etc. A proper understanding of fly ash-soil mixes is likely to provide viable solutions for its large-scale utilization. Earlier studies initiated in the laboratory have resulted in a good understanding of the California Bearing Ratio (CBR) behavior of fly ash-soil mixes. Subsequently, in order to increase the CBR value, cement has been tried as an additive to fly ash-soil mixes. This paper reports the results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A trajectory optimization approach is applied to the design of a sequence of open-die forging operations in order to control the transient thermal response of a large titanium alloy billet. The amount of time tire billet is soaked in furnace prior to each successive forging operation is optimized to minimize the total process time while simultaneously satisfying constraints on the maximum and minimum values of the billet's temperature distribution to avoid microstructural defects during forging. The results indicate that a "differential" heating profile is the most effective at meeting these design goals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper addresses the behaviour of compacted expansive soils under swell-shrink cycles. Laboratory cyclic swell-shrink tests were conducted on compacted specimens of two expansive soils at surcharge pressures of 6.25, 50.00, and 100.00 kPa. The void ratio and water content of the specimens at several intermediate stages during swelling until the end of swelling and during shrinkage until the end of shrinkage were determined to trace the water content versus void ratio paths with an increasing number of swell-shrink cycles. The test results showed that the swell-shrink path was reversible once the soil reached an equilibrium stage where the vertical deformations during swelling and shrinkage were the same. This usually occurred after about four swell-shrink cycles. The swelling and shrinkage path of each specimen subjected to full swelling - full shrinkage cycles showed an S-shaped curve (two curvilinear portions and a linear portion). However, the swelling and shrinkage path occurred as a part of the S-shaped curve, when the specimen was subjected to full swelling - partial shrinkage cycles. More than 80% of the total volumetric change and more than 50% of the total vertical deformation occurred in the central linear portion of the S-shaped curve. The volumetric change was essentially parallel to the saturation line within a degree of saturation range of 50-80% for the equilibrium cycle. The primary value of the swell-shrink path is to provide information regarding the void ratio change that would occur for a given change in water content for any possible swell-shrink pattern. It is suggested that these swell-shrink paths can be established with a limited number of tests in the laboratory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

‘Best’ solutions for the shock-structure problem are obtained by solving the Boltzmann equation for a rigid sphere gas by applying minimum error criteria on the Mott-Smith ansatz. The use of two such criteria minimizing respectively the local and total errors, as well as independent computations of the remaining error, establish the high accuracy of the solutions, although it is shown that the Mott-Smith distribution is not an exact solution of the Boltzmann equation even at infinite Mach number. The minimum local error method is found to be particularly simple and efficient. Adopting the present solutions as the standard of comparison, it is found that the widely used v2x-moment solutions can be as much as a third in error, but that results based on Rosen's method provide good approximations. Finally, it is shown that if the Maxwell mean free path on the hot side of the shock is chosen as the scaling length, the value of the density-slope shock thickness is relatively insensitive to the intermolecular potential. A comparison is made on this basis of present results with experiment, and very satisfactory quantitative agreement is obtained.