153 resultados para Power electronics course


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The following paper presents a Powerline Communication (PLC) Method for grid interfaced inverters, for smart grid application. The PLC method is based on the concept of the composite vector which involves multiple components rotating at different harmonic frequencies. The pulsed information is modulated on the fundamental component of the grid current as a specific repeating sequence of a particular harmonic. The principle of communication is same as that of power flow, thus reducing the complexity. The power flow and information exchange are simultaneously accomplished by the interfacing inverters based on current programmed vector control, thus eliminating the need for dedicated hardware. Simulation results have been shown for inter-inverter communication, both under ideal and distorted conditions, using various harmonic modulating signals.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A power filter is necessary to connect the output of a power converter to the grid so as to reduce the harmonic distortion introduced in the line current and voltage by the power converter. Many a times, a transformer is also present before the point of common coupling. Magnetic components often constitute a significant part of the overall weight, size and cost of the grid interface scheme. So, a compact inexpensive design is desirable. A higher-order LCL-filter and a transformer are increasingly being considered for grid interconnection of the power converter. This study proposes a design method based on a three-winding transformer, that generates an integrated structure that behaves as an LCL-filter, with both the filter inductances and the transformer that are merged into a single electromagnetic component. The parameters of the transformer are derived analytically. It is shown that along with a filter capacitor, the transformer parameters provide the filtering action of an LCL-filter. A single-phase full-bridge power converter is operated as a static compensator for performance evaluation of the integrated filter transformer. A resonant integrator-based single-phase phase locked loop and stationary frame AC current controller are employed for grid frequency synchronisation and line current control, respectively.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Closed loop current sensors used in power electronics applications are expected to have high bandwidth and minimal measurement transients. In this paper, a closed loop compensated Hall-effect current sensor is modeled. The model is used to tune the sensor's compensator. Analytical expression of step response is used to evaluate the performance of the PI compensator in the current sensor. This analysis is used to devise a procedure to design parameters of the PI compensator for fast dynamic response and for small dynamic error. A prototype current sensor is built in the laboratory. Simulations using the model are compared with experimental results to validate the model and to study the variation in performance with compensator parameters. The performance of the designed PI compensator for the sensor is compared with a commercial current sensor. The measured bandwidth of the designed current sensor is above 200 kHz, which is comparable to commercial standards. Implementation issues of PI compensator using operational amplifiers are also addressed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The voltage ripple and power loss in the DC-capacitor of a voltage source inverter depend on the harmonic currents flowing through the capacitor. This paper presents double Fourier series based harmonic analysis of DC capacitor current in a three-level neutral point clamped inverter, modulated with sine-triangle PWM. The analytical results are validated experimentally on a 5-kVA three-level inverter prototype. The results of the analysis are used for predicting the power loss in the DC capacitor.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents a computationally efficient model for a dc-dc boost converter, which is valid for continuous and discontinuous conduction modes; the model also incorporates significant non-idealities of the converter. Simulation of the dc-dc boost converter using an average model provides practically all the details, which are available from the simulation using the switching (instantaneous) model, except for the quantum of ripple in currents and voltages. A harmonic model of the converter can be used to evaluate the ripple quantities. This paper proposes a combined (average-cum-harmonic) model of the boost converter. The accuracy of the combined model is validated through extensive simulations and experiments. A quantitative comparison of the computation times of the average, combined and switching models are presented. The combined model is shown to be more computationally efficient than the switching model for simulation of transient and steady-state responses of the converter under various conditions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A three-level common-mode voltage eliminated inverter with single dc supply using flying capacitor inverter and cascaded H-bridge has been proposed in this paper. The three phase space vector polygon formed by this configuration and the polygon formed by the common-mode eliminated states have been discussed. The entire system is simulated in Simulink and the results are experimentally verified. This system has an advantage that if one of devices in the H-bridge fails, the system can still be operated as a normal three-level inverter at full power. This inverter has many other advantages like use of single dc supply, making it possible for a back-to-back grid-tied converter application, improved reliability, etc.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper reports instability and oscillations in the stator current under light-load conditions in a practical 100-kW induction motor drive. Dead-time is shown to be a cause for such oscillations. This paper shows experimentally that these oscillations could be mitigated significantly with the help of a simple dead-time compensation scheme.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dead-time is provided in between the gating signals of the top and bottom semiconductor switches in an inverter leg to prevent the shorting of DC bus. Due to this dead time, there is a significant unwanted change in the output voltage of the inverter. The effect is different for different pulse width modulation (PWM) methodologies. The effect of dead-time on the output fundamental voltage is studied theoretically as well as experimentally for bus-clamping PWM methodologies. Further, experimental observations on the effectiveness of dead-time compensation are presented.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Space-vector-based pulse width modulation (PWM) for a voltage source inverter (VSI) offers flexibility in terms of different switching sequences. Numerical simulation is helpful to assess the performance of a PWM method before actual implementation. A quick-simulation tool to simulate a variety of space-vector-based PWM strategies for a two-level VSI-fed squirrel cage induction motor drive is presented. The simulator is developed using C and Python programming languages, and has a graphical user interface (GUI) also. The prime focus being PWM strategies, the simulator developed is 40 times faster than MATLAB in terms of the actual time taken for a simulation. Simulation and experimental results are presented on a 5-hp ac motor drive.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Grid-connected inverters require a third-order LCL filter to meet standards such as the IEEE Std. 519-1992 while being compact and cost-effective. LCL filter introduces resonance, which needs to be damped through active or passive methods. Passive damping schemes have less control complexity and are more reliable. This study explores the split-capacitor resistive-inductive (SC-RL) passive damping scheme. The SC-RL damped LCL filter is modelled using state space approach. Using this model, the power loss and damping are analysed. Based on the analysis, the SC-RL scheme is shown to have lower losses than other simpler passive damping methods. This makes the SC-RL scheme suitable for high power applications. A method for component selection that minimises the power loss in the damping resistors while keeping the system well damped is proposed. The design selection takes into account the influence of switching frequency, resonance frequency and the choice of inductance and capacitance values of the filter on the damping component selection. The use of normalised parameters makes it suitable for a wide range of design applications. Analytical results show the losses and quality factor to be in the range of 0.05-0.1% and 2.0-2.5, respectively, which are validated experimentally.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Modern pulse-width-modulated (PWM) rectifiers use LC L filters that can be applied in both the common mode and differential mode to obtain high-performance filtering. Interaction between the passive L and C components in the filter leads to resonance oscillations. These oscillations need to be damped either by the passive damping or active damping. The passive damping increases power loss and can reduce the effectiveness of the filter. Methods of active damping, using control strategy, are lossless while maintaining the effectiveness of the filters. In this paper, an active damping strategy is proposed to damp the oscillations in both line-to-line and line-to-ground. An approach based on pole placement by the state feedback is used to actively damp both the differential-and common-mode filter oscillations. Analytical expressions for the state-feedback controller gains are derived for both continuous and discrete-time model of the filter. Tradeoff in selection of the active damping gain on the lower order power converter harmonics is analyzed using a weighted admittance function. Experimental results on a 10-kVA laboratory prototype PWM rectifier are presented. The results validate the effectiveness of the active damping method, and the tradeoff in the settings of the damping gain.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A space vector-based hysteresis current controller for any general n-level three phase inverter fed induction motor drive is proposed in this study. It offers fast dynamics, inherent overload protection and low harmonic distortion for the phase voltages and currents. The controller performs online current error boundary calculations and a nearly constant switching frequency is obtained throughout the linear modulation range. The proposed scheme uses only the adjacent voltage vectors of the present sector, similar to space vector pulse-width modulation and exhibits fast dynamic behaviour under different transient conditions. The steps involved in the boundary calculation include the estimation of phase voltages from the current ripple, computation of switching time and voltage error vectors. Experimental results are given to show the performance of the drive at various speeds, effect of sudden change of the load, acceleration, speed reversal and validate the proposed advantages.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Novel switching sequences have been proposed recently for a neutral-point-clamped three-level inverter, controlled effectively as an equivalent two-level inverter. It is shown that the four novel sequences can be grouped into two pairs of sequences. Using each pair of sequences, a hybrid pulsewidth modulation (PWM) technique is proposed, which deploys the two sequences in appropriate spatial regions to reduce the current ripple. Further, a third hybrid PWM technique is proposed which uses all the five sequences (including the conventional sequence) in appropriate spatial regions. Each proposed hybrid PWM is shown, both analytically and experimentally, to outperform its constituent PWM methods in terms of harmonic distortion. In particular, the third proposed hybrid PWM reduces the total harmonic distortion considerably at low- and high-speed ranges of a constant volts-per-hertz induction motor drive, compared to centered space vector PWM.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Voltage Source Inverter (VSI) fed induction motors are widely used in variable speed applications. For inverters using fixed switching frequency PWM, the output harmonic spectra are located at a few discrete frequencies. The ac motordrives powered by these inverters cause acoustic noise. This paper proposes a new variable switching frequency pwm technique and compares its performance with constant switching frequency pwm technique. It is shown that the proposed technique leads to spread spectra of voltages and currents. Also this technique ensures that no lower order harmonics are present and the current THD is comparable to that of fixed switching frequency PWM and is even better for higher modulation indices.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Workplace noise has become one of the major issues in industry not only because of workers’ health but also due to safety. Electric motors, particularly, inverter fed induction motors emit objectionably high levels of noise. This has led to the emergence of a research area, concerned with measurement and mitigation of the acoustic noise. This paper presents a lowcost option for measurement and spectral analysis of acoustic noise emitted by electric motors. The system consists of an electret microphone, amplifier and filter. It makes use of the windows sound card and associated software for data acquisition and analysis. The measurement system is calibrated using a professional sound level meter. Acoustic noise measurements are made on an induction motor drive using the proposed system as per relevant international standards. These measurements are seen to match closely with those of a professional meter.