279 resultados para Metallic-glass
Resumo:
Separation of metallic from semiconducting single-walled carbon nanotubes has been a major challenge for some time and some previous efforts have resulted in partial success. We have accomplished the separation effectively by employing fluorous chemistry wherein the diazonium salt of 4-heptadecafluorooc tylaniline selectively reacts with the metallic nanotubes present in the mixture of nanotubes. The resulting fluoroderivative was extracted in perfluorohexane leaving the semiconducting nanotubes in the aqueous layer. The products have been characterized by both Raman and electronic absorption spectroscopy. The method avoids the cumbersome centrifugation step required by some other procedures.
Resumo:
The present, paper deals with the CAE-based study Of impact of jacketed projectiles on single- and multi-layered metal armour plates using LS-DYNA. The validation of finite element modelling procedure is mainly based on the mesh convergence study using both shell and solid elements for representing single-layered mild steel target plates. It, is shown that the proper choice of mesh density and the strain rate-dependent material properties are essential for all accurate prediction of projectile residual velocity. The modelling requirements are initially arrived at by correlating against test residual velocities for single-layered mild steel plates of different depths at impact velocities in the ran.-c of approximately 800-870 m/s. The efficacy of correlation is adjudged, in terms of a 'correlation index', defined in the paper: for which values close to unity are desirable. The experience gained for single-layered plates is next; used in simulating projectile impacts on multi-layered mild steel target plates and once again a high degree of correlation with experimental residual velocities is observed. The study is repeated for single- and multi-layered aluminium target plates with a similar level of success in test residual velocity prediction. TO the authors' best knowledge, the present comprehensive study shows in particular for the first time that, with a. proper modelling approach, LS-DYNA can be used with a great degree of confidence in designing perforation-resistant single and multi-layered metallic armour plates.
Resumo:
Conjugated polymers are promising materials for electrochromic device technology. Aqueous dispersions of poly(3,4-ethylenedioxythiophene)-(PEDOT) were spin coated onto transparent conducting oxide (TCO) coated glass substrates. A seven-layer electrochromic device was fabricated with the following configuration: glass/transparent conducting oxide (TCO)/PEDOT (main electrochromic layer)/gel electrolyte/prussian blue (counter electrode)/TCO/glass. The device fabricated with counter electrode (Prussian blue) showed a contrast of 18% and without counter electrode showed visible contrast of 5% at 632 nm at a voltage of 1.9 V. The comparison of the device is done in terms of the colouration efficiency of the devices with and without counter electrode.
Resumo:
Transparent glasses of BaNaB9O15 (BNBO) were fabricated via the conventional melt-quenching technique. The amorphous and the glassy nature of the as-quenched samples were, respectively, confirmed by x-ray powder diffraction and differential scanning calorimetry (DSC). The glass transition and crystallization parameters were evaluated under non-isothermal conditions using DSC. The correlation between the heating rate dependent glass transition and the crystallization temperatures was studied and the Kauzmann temperature was deduced for BNBO glass plates and powdered samples. The values of the Kauzmann temperature for the plates and powdered samples were 776 K and 768 K, respectively. An approximation- free method was used to evaluate the crystallization kinetic parameters for the BNBO glass samples. The effect of the sample thickness on the crystallization kinetics of BNBO glasses was also investigated.
Resumo:
Bulk Ge15Te83Si2 glass has been found to exhibit memory-type switching for 1 mA current with a threshold electric field of 7.3 kV/cm. The electrical set and reset processes have been achieved with triangular and rectangular pulses, respectively, of 1 mA amplitude. In situ Raman scattering studies indicate that the degree of disorder in Ge15Te83Si2 glass is reduced from off to set state. The local structure of the sample under reset condition is similar to that in the off state. The Raman results are consistent with the switching results which indicate that the Ge15Te83Si2 glass can be set and reset easily. (C) 2007 American Institute of Physics.
Resumo:
Transparent glasses and glass nano crystal composites (GNCs) of various compositions in the system (100 - x)Li2B4O7-x (BaO-Bi2O3-Nb2O5) (where x = 10, 20, and 30 in molar ratio) were fabricated via splat-quenching technique. The glassy nature of the as quenched samples was established by differential thermal analyses. X-ray powder diffraction and transmission electron microscopic (TEM) studies confirmed the formation of layered perovskite BBN via a fluorite like phase. TEM studies revealed the presence of 10 nm sized spherical crystallites of fluorite like BaBi2Nb2O9 phase in the glassy matrix of Li2B4O7 (LBO). The influence of composition on the dielectric and the optical properties (transmission, optical band gap) of these samples has been investigated. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
The recent discovery of spin ice is a spectacular example of the noncoplanar spin arrangements that can arise in the pyrochlore A2B2O7 structure. We present magnetic and thermodynamic studies on the metallic ferromagnet pyrochlore Sm2Mo2O7. Our studies, carried out on oriented crystals, suggest that the Sm spins have an ordered spin-ice ground state below about T*=15 K. The temperature and field evolution of the ordered spin-ice state are governed by an antiferromagnetic coupling between the Sm and Mo spins. We propose that as a consequence of a robust feature of this coupling, the tetrahedra aligned with the external field adopt a one-in, three-out spin structure as opposed to the three-in, one-out structure in dipolar spin ices, as the field exceeds a critical value.
Resumo:
We report the fabrication of La0.7Ca0.3MnO3 nanotubes (LCMONTs) with a diameter of about 200 nm, by a modified sol-gel method utilizing nanochannel alumina templates. High resolution transmission electron microscopy confirmed that the obtained LCMONTs are made up of nanoparticles (8-12 nm), which are randomly aligned in the wall of the nanotubes. The strong irreversibility between zero field cooling (ZFC) and field cooling (FC) magnetization curves as well as a cusplike peak in the ZFC curve gives strong support for surface spin glass behavior.
Resumo:
Nanocrystalline Zn1-xMnxS films (x=0.04, 0.08 and 0.12) were deposited on glass substrates at 400 K using a simple resistive thermal evaporation technique. All the deposited films were characterized by chemical, structural, morphological, optical and magnetic properties. Scanning electron microscopy and atomic force microscopy studies showed that all the films investigated were in nanocrystalline form with the grain size lying in the range 10–20 nm. All the films exhibited cubic structure and the lattice parameters increase linearly with composition. The absorption edge shifted from the higher-wavelength region to lower wavelengths with increase in Mn concentration. The magnetization increased sharply with increase of the Mn content up to x=0.08 and then decreased with further increase of the Mn content. Particularly, Zn0.92Mn0.08S concentration samples show a weak ferromagnetic nature, which might be the optimum concentration for optoelectronic and spintronic device applications.
Resumo:
Terahertz time-domain spectroscopy has been carried out on a metallic film of polypyrrole (PPy doped by PF6). The sample was exposed to air to investigate how the conductivity of the film varies as a function of time. The absorption and dispersion of the film decrease during initial days, and then tend to saturate. The conductivity of unaged sample follows the Drude model, and upon aging the data fit to the localization-modified Drude model. The fitting parameters show that the number of charge carriers decreases during the aging process. The initial rapid decrease in conductivity suggests that some of the delocalized carriers are localized due to aging. (C) 2007 American Institute of Physics.
Resumo:
Enrichment of metallic single-walled carbon nanotubes (SWNTs) has been accomplished by several means, including new extraction and synthetic procedures and by interaction with metal nanoparticles as well as electron donor molecules. In the presence of Fe(CO)(5) the arc discharge method yields nearly pure metallic nanotubes. Fluorous chemistry involving the preferential diazotization of metallic SWNTs offers a good procedure of obtaining the pure metallic species. Interaction of gold or platinum nanoparticles as well as of electron-donor molecules such as aniline and tetrathiafulvalene (TTF) transform semiconducting SWNTs into metallic ones. Raman and electroni spectroscopies provide ideal means to monitor enrichment of metallic SWNTs.
Resumo:
Dielectric measurements have been made on a number of molecular complexes of beryllium, zinc, cadmium and mercuric halides. The polarizations observed have been interpreted in terms of a tetrahedral configuration for the undissociated beryllium, zinc and cadmium halide complexes. In other cases the observed polarization has been shown to be due to the dissociation of the complex in solution.
Resumo:
Transparent glasses of various compositions in the system (100 -x)(Li2B4O7)-x(Ba5Li2Ti2Nb8O30) (5 <= x <= 20, in molar ratio) were fabricated by splat quenching technique. The glassy nature of the as-quenched samples was established by differential thermal analyses (DTA). X-ray powder diffraction studies confirmed the as-quenched glasses to be amorphous and the heat-treated to be nanocrystalline. Controlled heat-treatment of the as-quenched glasses at 500 degrees C for 8 h yielded nanocrystallites embedded in the glass matrix. High Resolution Transmission Electron Microscopy (HRTEM) of these samples established the size of the crystallites to be in the nano-range and confirmed the phase to be that of Ba5Li2Ti2Nb8O30 (BLTN) which was, initially, identified by X-ray powder diffraction. The frequency, temperature and compositional dependence of the dielectric constant and the electrical conductivity of the glasses and glass nanocrystal composites were investigated in the 100 Hz to 10 MHz frequency range. Electrical relaxations were analyzed using the electric modulus formalisms. The imaginary part of electric modulus spectra was modeled using an approximate solution of Kohlrausch-Williams-Watts relation. The frequency dependent electrical conductivity was rationalized using Jonscher's power law. The activation energy associated with the dc conductivity was ascribed to the motion of Li+ ions in the glass matrix. The activation energy associated with dielectric relaxation was almost equal to that of the dc conductivity, indicating that the same species took part in both the processes. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
An inexpensive all glass sealed stirrer may be constructed using a surgical syringe of about 10-ml capacity.
Resumo:
Seawater aging response was investigated in marine-grade glass/epoxy, glass/vinyl ester, carbon/epoxy and carbon/vinyl ester composites with respect to water uptake, interlaminar shear strength, flexural strength, tensile strength, and tensile fracture surface observations. The reduction of mechanical properties was found to be higher in them initial stages which showed saturation in the longer durations of seawater immersion. The flexural strength and ultimate tensile strength (UTS) dropped by about 35% and 27% for glass/epoxy, 22% and 15% for glass/vinyl ester, 48% and 34% for carbon/epoxy 28%, and 21% carbon/vinyl ester composites respectively. The water uptake behavior of epoxy-based composites was inferior to that of the vinyl system.